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In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods,
salps and pteropods, are notable because of their biomass and abundance and their
roles in maintaining food webs and ecosystem structure and function, including the
provision of globally important ecosystem services. These groups are consumers of
microbes, primary and secondary producers, and are prey for fishes, cephalopods,
seabirds, and marine mammals. In providing the link between microbes, primary
production, and higher trophic levels these taxa influence energy flows, biological
production and biomass, biogeochemical cycles, carbon flux and food web interactions
thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic
krill (Euphausia superba) and various fish species are harvested by international
fisheries. Global and local drivers of change are expected to affect the dynamics
of key zooplankton species, which may have potentially profound and wide-ranging
implications for Southern Ocean ecosystems and the services they provide. Here
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we assess the current understanding of the dominant metazoan zooplankton within
the Southern Ocean, including Antarctic krill and other key euphausiid, copepod,
salp and pteropod species. We provide a systematic overview of observed and
potential future responses of these taxa to a changing Southern Ocean and the
functional relationships by which drivers may impact them. To support future ecosystem
assessments and conservation and management strategies, we also identify priorities
for Southern Ocean zooplankton research.

Keywords: zooplankton, ecosystems, Southern Ocean, global change, projections, ecosystem services,
management, conservation

INTRODUCTION

Metazoan zooplankton (hereafter zooplankton) are globally
important. They are ubiquitous and abundant in the world’s
oceans (Bar-On et al., 2018; Chiba et al., 2018), playing
a critical role in the structure and function (Odum, 1964,
1969) of marine ecosystems, including ‘ecosystem services’
that benefit humans (Millennium Ecosystem Assessment, 2005;
Simcock, 2017; Bebianno et al., 2021a,b). Zooplankton are pivotal
in the cycling of carbon and nutrients, regulating climate,
supporting primary and secondary production, maintaining
biodiversity, food web configurations and balance among
trophic levels, and sustaining fisheries production, tourism,
and human communities (Richardson, 2008; Keister et al.,
2012; Pinkerton et al., 2020). Their central trophic position
as grazers and prey means they directly affect biomass,
structure of food webs, and modulate ecosystem functioning.
In some regions, zooplankton are the major grazers and can
influence the amount of production that reaches mid and
higher trophic level consumers, including fish, squid, marine
mammals, and birds. Through the regeneration of nitrogen,
zooplankton enhance phytoplankton production (Richardson,
2008). Processes associated with feeding, vertical migration, and
mortality also support microbial production and facilitate the
transfer of organic matter to the deep ocean: contributing to
benthic communities (Ruhl and Smith, 2004; Schnack-Schiel
and Isla, 2005), carbon drawdown, storage and sequestration,
dimethyl sulfide production (Daly and DiTullio, 1996) and hence
a negative (mitigating) feedback on climate change (Jónasdóttir
et al., 2015; Steinberg et al., 2017; Barnes et al., 2018).

Like all ecological communities, zooplankton communities
are shaped by a combination of intrinsic biotic interactions
(e.g., competition, food web interactions) and extrinsic abiotic
interactions associated with the influence of environmental
stressors (or drivers) on individual species. Several attributes
of zooplankton, including poikilothermy, stenothermy, small
size (20 µm to 20 mm in length in the case of micro- and
mesozooplankton), short generation times and lifecycles
(generally <1 year), and complex life histories (often passing
through a range of ontogenic stages), render them very sensitive
to environmental drivers (Hays et al., 2005; Richardson,
2008). This can be expressed as alterations in, for example,
behavior, physiology, phenology, productivity, abundances
and shifts in species ranges and distribution, all of which

modify zooplankton populations and community dynamics (i.e.,
changes in population or community structure, dominance,
and distribution patterns) and their trophic interactions with
other taxa over a range of space and time scales. Through these
alterations the structure and function of whole ecosystems can
be modified (Doney et al., 2012; Malhi et al., 2020). Zooplankton
are therefore not only susceptible to human-induced climate
change and concurrent processes (a significant component
of global change), but they also propagate climate signals
through ecosystems and feedback to biogeochemical cycles,
carbon sequestration, and the global climate system. As such
they are considered good indicators of water mass types and
environmental change (Chiba et al., 2018), and are integral
to interpreting the responses of marine ecosystems to climate
change, and developing adaptation and mitigation strategies.
In addition to observed impacts of natural environmental
variability, there are many diverse examples of the impacts
of human-induced climate change and other anthropogenic
stressors (e.g., pollutants, fisheries) on zooplankton that are
having profound and complex ecosystem-level consequences
(see Richardson, 2008; Doney et al., 2012; Murphy et al., 2016;
Beaugrand and Kirby, 2018).

To enhance understanding and predictions of Earth System
functioning and global change under the mounting pressures of
the Anthropocene (IPCC, 2018, 2019), it is imperative that we
understand the role of zooplankton within the world’s oceans
under present conditions, the potential impacts of future change
and associated risks (Reid et al., 2003; Atkinson et al., 2012;
Constable et al., 2014b; Pecuchet et al., 2020; Kohlbach et al.,
2021), and adequately represent zooplankton dynamics in Earth
System Models (ESMs) (Le Quéré et al., 2005, 2016; Buitenhuis
et al., 2010). This requires specific knowledge of the complex
interactions and mechanisms associated with zooplankton
dynamics, their sensitivity to drivers of change, and the resultant
effects on ecosystems and socioeconomics. Appreciation of these
aspects at local, regional and oceanic scales are essential in
underpinning decision-making for regulating human activities
that impact ecosystems, conserving and managing ecosystems,
and planning for the response to future change to promote the
resilience and viability of marine ecosystems (Malhi et al., 2020).

Antarctica and the Southern Ocean are inherent to the
Earth System. In addition to the perturbations that have
already impacted the Southern Ocean, major changes in its
habitats and ecosystems are expected over the coming years
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in response to increased pressures from a range of global
(see Morley et al., 2020) and local environmental drivers (see
Grant et al., 2021), the majority of which have an anthropogenic
component (Murphy et al., 2007b; Rogers et al., 2007; Clarke
et al., 2012; Constable et al., 2014b; Gutt et al., 2015; Chown
and Brooks, 2019; Kennicutt et al., 2019). Owing to the extensive
physical, biogeochemical, and ecological connectivity between
Southern Ocean ecosystems and the global ocean, future changes
in the structure and functioning of these ecosystems will also have
consequences throughout the Earth System (Henley et al., 2020;
Murphy et al., 2021). To predict how Southern Ocean ecosystems
will respond to global change and the implications for regional
and Earth System functioning and decision-making, assessments
of the sensitivity of Southern Ocean zooplankton to changes in
these drivers are necessary (Constable et al., 2014a,b). Moreover,
changes in zooplankton population and community dynamics
and their relative importance in Southern Ocean food webs
over time will reflect species-specific differences in vulnerability
or resilience to these drivers. Together with a mechanistic
understanding of the processes involved, this knowledge will
enable the development of food web and ecosystem models
that are needed for assessing different scenarios of change
and projecting how Southern Ocean ecosystem structure and
functioning may be impacted. Aside from Antarctic krill
(Euphausia superba), which are comparatively well studied,
zooplankton are considered to be less well understood but critical
to the development of these models (Murphy et al., 2012a, 2016,
2018; McCormack et al., 2021).

Southern Ocean zooplankton comprise a diverse range of
endemic and non-endemic species that collectively dominate the
pelagic biomass. They vary in their body forms and sizes (e.g.,
from <100 µm copepod nauplii to >1 m jellyfish or salp chains),
and in their life history traits and strategies, and occupy a range
of habitats and environmental conditions (Atkinson et al., 2012).
Many of the endemic species are uniquely adapted to Southern
Ocean conditions, including the intense seasonality, sea ice, and
low ocean temperatures (Murphy et al., 2016) associated with its
cooling >24 mya and formation of the Antarctic Circumpolar
Current (ACC) and Antarctic Polar Front (APF) (Clarke and
Johnston, 2003; Lagabrielle et al., 2009; Clarke and Crame, 2010).
These physical features are indeed fundamental drivers of natural
processes, life history evolution, and ecological connectivity
across the Southern Ocean (Clarke and Crame, 2010; Clarke et al.,
2012; Murphy et al., 2012b, 2016; Varpe, 2017), signifying the
vulnerability of Southern Ocean biota, including zooplankton, to
climate change (Constable et al., 2014b).

A number of consistent and distinct zooplankton
communities have been identified in the Southern Ocean,
occupying the cold coastal regions and seasonally variable sea
ice zone in the south, the open ocean, and the relatively warmer
subantarctic areas in the north. Zooplankton abundance is
highest in the epipelagic and upper mesopelagic layers (wherein
many species undertake diel vertical migrations) though some
species may extend to deeper waters during seasonal migrations
and intermittent forays. These biogeographic regions are
generally defined by sea and pack ice, bathymetry, and the
series of oceanographic frontal zones across the Southern Ocean
(Hosie et al., 2000; Hunt and Hosie, 2005, 2006; Pinkerton et al.,

2010; Ward et al., 2012; Hosie et al., 2014; Steinberg et al., 2015).
The associated zooplankton communities are dominated by
a small number of metazoan taxa (including euphausiids,
copepods, salps, and pteropods) and vary in their structure
(i.e., species richness and diversity) and dominance patterns.
Interannual variations in community dynamics also occur within
and between these regions in relation to seasonal succession
and transitions through key life history stages (Atkinson and
Sinclair, 2000; Froneman et al., 2000; Pakhomov et al., 2000;
Hunt and Hosie, 2006; Ducklow et al., 2012; Murphy et al., 2021).
Additional temporal variations in community dynamics may also
occur in relation to oceanographic and cryospheric processes.
Future shifts in sea ice (Turner et al., 2020), fronts (Chapman
et al., 2020) and related bio-physical oceanographic processes
(e.g., Pinkerton et al., 2020) in association with human-induced
climate change are projected to result in changes in zooplankton
distributions (Constable et al., 2014b). There is also concern
over the impacts of additional climate-related processes (e.g.,
atmospheric and oceanographic processes, including ocean
acidification) and other direct and indirect anthropogenic
drivers (e.g., dynamics of predator and prey populations, the
recovery of previously harvested whale species, fisheries, invasive
species, and pollution, etc.) on zooplankton and community
dynamics and the implications for Southern Ocean ecosystems.

The review by Atkinson et al. (2012) provided an overview
of the then-current understanding of the biology of dominant
Southern Ocean metazoan zooplankton, focusing primarily on
the data available for parameterizing models. In the intervening
decade, understanding of the distribution, ecology, and response
to change of these taxa has continued to advance concomitant
with a greater diversity of research approaches. These advances
have been facilitated in part by improved data availability as
a result of new surveys and process studies (e.g., Meyer et al.,
2017; Wallis, 2018; Wallis et al., 2019; Conroy et al., 2020; Yang
et al., 2020), and extensive data rescue and compilation (e.g.,
Mackey et al., 2012; Atkinson et al., 2017; Tarling et al., 2018;
Perry et al., 2019; Pinkerton et al., 2020; Takahashi et al., 2021).
At the same time advances have been made in modelling across
multiple taxa (e.g., Pinkerton et al., 2020) and of key species
such as Antarctic krill (e.g., Constable and Kawaguchi, 2018;
Veytia et al., 2020; Sylvester et al., 2021) and Thysanoessa macrura
(e.g., Driscoll et al., 2015), and Salpa thompsoni (e.g., Henschke
et al., 2018). There has also been progress in the understanding
of the role of zooplankton in biogeochemical cycling, including
the biological pump via grazing and vertical carbon flux (e.g.,
Alcaraz et al., 2014; Henschke et al., 2016; Belcher et al., 2019;
Cavan et al., 2019; Manno et al., 2020) and their sensitivities to
ocean acidification, including the additional synergistic effects
of warming, temperature and deoxygenation (e.g., Kawaguchi
et al., 2013; Manno et al., 2017, 2018; Ericson et al., 2018; Peck
et al., 2018; Bednaršek et al., 2019; Saba et al., 2021). Some of
these advances, especially for Antarctic krill, are captured in other
reviews, which have generally focused on the ecological effects of
climate change (Mackey et al., 2012; Hunt et al., 2016; Chown
and Brooks, 2019; Siegert et al., 2019; Rogers et al., 2020) and/or
the Antarctic krill fishery (e.g., Meyer et al., 2020; McBride et al.,
2021). This contribution adds to this literature with an up-to-date
systematic comparison of the major Southern Ocean zooplankton

Frontiers in Ecology and Evolution | www.frontiersin.org 3 June 2022 | Volume 9 | Article 624692

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-624692 June 23, 2022 Time: 17:17 # 4

Johnston et al. Southern Ocean Zooplankton Assessment

taxa as detailed in the next paragraph. We stress, however, that
limitations remain due to the paucity (and/or inaccessibility)
of detailed qualitative and quantitative knowledge for many
zooplankton species, populations and communities. In particular
the underlying processes of their dynamics and causal links to
drivers are often poorly understood; furthermore, projections of
future changes in Southern Ocean zooplankton that can support
policy decisions are limited.

The first Marine Ecosystem Assessment for the Southern
Ocean (MEASO) is an international collaborative activity of the
Integrating Climate and Ecosystem Dynamics in the Southern
Ocean (ICED) programme. The primary aim of MEASO is to
assess the status and trends of Southern Ocean habitats, species,
and food webs, and the risks to these ecosystems and their
services from drivers of change, particularly climate change
and related processes. As a core MEASO contribution, this
paper synthesizes the current state of knowledge of zooplankton,
focusing on the dominant taxa that are understood to have
an important role in ecosystem structure and functioning and
are susceptible to global change, and for which sufficient data
and knowledge are available. We provide an overview of key
euphausiids, copepods, salps, and pteropods in terms of their
ecology and roles, observed changes, and future prognoses across
the Southern Ocean within the MEASO areas [which include
protected areas and fishery reporting areas of the Commission
for the Conservation of Antarctic Marine Living Resources
(CCAMLR), Figure 1]. We synthesize available knowledge on
their current circumpolar distributions, observed changes, and
the key drivers and mechanisms involved. We also provide
an analysis of environmental suitability (modelled abundance)
for some of these taxa in the MEASO areas over the past
two decades based on samples collected by the international
Scientific Committee on Antarctic Research (SCAR) Southern
Ocean Continuous Plankton Recorder Survey (SO-CPR). We
undertake a qualitative assessment of potential future changes of
these key taxa in response to anticipated changes in key physical,
chemical, and ecological global and local drivers (Figure 2)
that we consider important for these taxa. We also assess their
potential resilience (sensu Oliver et al., 2015a) focusing on the
mechanisms that may underpin resistance and recovery, which
can either be expressed (or examined) at the individual or
population level; an aspect that has not been widely explored for
these taxa. We conclude by identifying current limitations and
important directions for Southern Ocean zooplankton research
to enhance marine ecosystem models for the region, develop
robust projections of change, and improve understanding of
Earth System functioning that will further support policy makers
in developing conservation and management strategies.

KEY TAXA IN SOUTHERN OCEAN
ZOOPLANKTON COMMUNITIES

Four zooplankton taxa are notable for their biomass and
abundance: euphausiids, copepods, salps, and pteropods
(Atkinson et al., 2012). There is also increasing awareness and
insight into their roles in maintaining Southern Ocean ecosystem
structure and function, including locally and globally important

FIGURE 1 | Areas for assessing status and trends of dominant metazoan
zooplankton in the Marine Ecosystem Assessment for the Southern Ocean
(black lines). Sectors are divided meridionally: corresponding names of
sectors are outside the circle. Zones extend from the coast to the Southern
Antarctic Circumpolar Current Front (SACCF, Antarctic), to the Subantarctic
Front (SAF, Subantarctic) and to the Subtropical Front (STF, Northern). Seas
are marked in the Antarctic Zone as (1) Davis, (2) Cooperation, (3) Cosmonaut,
(4) Riiser-Larsen, (5) Haakon VII, (6) Lazarev, (7) Weddell, (8) Scotia, (9)
Bellingshausen, (10) Amundsen, (11) Ross, and (12) Dumont D’Urville. Islands
in the Commission for the Conservation of Antarctic Marine Living Resources
(CCAMLR) area include Heard (HI), Isles Kerguelen (IK), Crozet (CI), Prince
Edward-Marion (PEM), Bouvet (BI), South Sandwich (SS), South Georgia (SG),
South Orkney (SO), Ob and Lena Banks (OLB), and South Shetlands (not
initialed but found on the north-western side of Antarctic Peninsula). Gray lines
indicate the CCAMLR reporting areas (Subareas and Divisions). NB: The
Southern Boundary (not shown) and the STF mark the southern and northern
limits of the intense eastward flowing Antarctic Circumpolar Current (ACC, not
shown), which reaches up to 2000 km wide and extends from surface waters
to 2000–4000 m. The Antarctic Polar Front, APF (not shown) lies between the
SACCF and SAF and represents an important ecological boundary. It marks
the northern extent of ice-influenced surface waters, and the transition
between the cold surface waters to the south and the warmer waters to the
north. Within the ACC, the SACCF, APF, and SAF delimit boundaries between
different water masses with distinct and relatively homogeneous physical and
chemical characteristics. These also coincide with intense narrow currents jets
that dominate the ACC (see Orsi et al., 1995; Rintoul, 2018; Park et al., 2019;
Chapman et al., 2020).

ecosystem services (Grant et al., 2013; Rogers et al., 2020; Trebilco
et al., 2020; Cavanagh et al., 2021), and their susceptibility to
global change. Members of these taxa have evolved distinct and
complex life histories, habitat, and environmental preferences
which define their spatial and temporal distributions, and form
part of the key zooplankton communities described above with
varying degrees of dominance and support regional pelagic food
webs (Figures 3, 4) across the MEASO areas (see Supplementary
Table 1; Bestley et al., 2020; Pinkerton et al., 2020; Brasier et al.,
2021; Caccavo et al., 2021; McCormack et al., 2021).

The euphausiids have similar morphological, reproductive,
and behavioral (i.e., swarming, migrating) traits, and trophic
niches but they vary substantially in their adult size, life
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FIGURE 2 | Key drivers of change in metazoan zooplankton taxa within the Southern Ocean. For a complete description of global and local drivers of change in
Southern Ocean ecosystems see Morley et al. (2020) and Grant et al. (2021).

span and adaptations to/associations with ocean temperatures
(Cuzin-Roudy et al., 2014; Siegel, 2016). The dominant
euphausiids include three endemic species. Antarctic krill is
considered a keystone species and is the best studied secondary
producer. It is the largest and longest-lived euphausiid in
the Southern Ocean and a dominant zooplankton omnivore,
capable of forming extensive dense swarms (up to several
kilometers in length and tens of meters in depth), and
channels substantial primary production directly to higher
trophic level predators (Siegel, 2000, 2016). Whilst it has a
circumpolar distribution and wide latitudinal range in the
cool waters south of the APF, its biomass is concentrated
in the iron-enriched waters of the southwest Atlantic sector
where phytoplankton blooms are common (a region referred
to as high nutrient, high chlorophyll, HNHC). Here Antarctic
krill is the target of an international fishery (CCAMLR, 2018;
Grant et al., 2021) and supports large populations of fish,

marine mammals and seabirds, underpinning wildlife tourism
and commercially exploited fish species (Antarctic toothfish,
Dissostichus mawsoni, Patagonian toothfish, D. eleginoides, and
mackerel icefish, Champsocephalus gunnari). At higher latitudes,
the endemic congener E. crystallorophias (ice or crystal krill),
becomes more common, being restricted to cold (<0◦C)
shallow coastal waters associated with sea ice and in polynyas.
Thysanoessa macrura is perhaps the most numerically abundant
Southern Ocean euphausiid, with a cosmopolitan distribution,
contributing to zooplankton communities across a much wider
(and more northerly) latitudinal range than E. superba and
E. crystallorophias.

In high nutrient, low chlorophyll (HNLC) regions of the
Southern Ocean, copepods dominate the zooplankton fauna with
a similar biomass but greater total production than Antarctic krill
(Atkinson et al., 2012). Across this group, there is considerable
diversity in life history traits and strategies, particularly in their
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FIGURE 3 | Metazoan zooplankton occupy a range of habitats throughout the Southern Ocean, from the continent to the subantarctic islands, from the surface
waters to the deep ocean, and in association with sea ice. They migrate vertically over daily and/or seasonal timescales. Several species of euphausiids, copepods,
salps and pteropods are notable for their biomass and importance in maintaining Southern Ocean food webs and ecosystem structure and functioning, including as
key consumers and prey items in supporting benthic communities and predator populations, and in biogeochemical cycles and carbon budgets. A number are also
important in the diets of fish, marine mammals and seabirds that underpin wildlife tourism and commercially exploited fish species (Antarctic toothfish, Patagonian
toothfish, and mackerel icefish), while Antarctic krill (Euphausia superba) is the direct target of harvesting operations. Not illustrated (for clarity) are a variety of other
detritivorous or carnivorous groups, for example ostracods, cnidarians, appendicularians, polychaetes, decapods, etc., whose predominance increases with depth.
We have illustrated chaetognaths as a major predator of the key taxa illustrated here, although many other taxa such as cnidarians and decapods also perform this
function. Intermittent forays: performed by Antarctic krill to the seabed are carried out over a range of timescales from daily to seasonal.

morphological, reproductive, and behavioral traits, and dietary
preferences, ranging from the small (1 mm) egg brooding,
opportunistic omnivorous Oithona similis to the large (∼10 mm)
free spawning and primarily herbivorous Rhincalanus gigas.
The deep winter diapause (or less active) stage of the endemic
Calanoides acutus and some of the larger species, such as R. gigas,
integrate energy rich lipid production from phytoplankton across
space and time, which fuels upper trophic levels (Schnack-Schiel
and Hagen, 1995; Atkinson, 1998; Pasternak and Schnack-Schiel,
2001) and may contribute to a significant, but yet poorly known,
proportion of Southern Ocean carbon sequestration via mortality
and the “lipid pump”(Shreeve et al., 2005; Jónasdóttir et al., 2015).

Salps (particularly Salpa thompsoni and Ihlea racovitzai),
together with euphausiids and copepods, comprise the bulk
of the zooplankton both in terms of absolute numbers and
biomass (Pakhomov et al., 2002; Pakhomov, 2004; Siegel, 2016).
These large gelatinous pelagic tunicates can form seasonally
high densities. South of the APF, they are major grazers
of smaller phytoplankton, and their importance and spatio-
temporal variability in food web linkages, particularly those
with higher trophic levels, and vertical carbon flux, is becoming

increasingly realized (Kelly et al., 2020; Henschke et al., 2021).
Whilst I. racovitzai occurs in cold ice-covered regions close
to the Antarctic continent, S. thompsoni occupies a wider
latitudinal range, preferring warmer waters of the APF. These
temperature preferences generally result in spatial segregation
from E. superba, although co-occurrence is also observed.
Although the relative role of euphausiids, copepods and salps in
carbon and biogeochemical cycling is still poorly resolved despite
decades of research, the extensive abundances and biomass
of the euphausiids, copepods and salps imply their potential
significance in driving biogeochemical cycling and feedback
processes across the circumpolar ocean (see Henley et al., 2020).

Pteropods are another important member of the Southern
Ocean zooplankton, and some of the highest population
densities in the global distribution of this taxa are estimated
to occur in this region (Hunt et al., 2008; Roberts et al.,
2014). Although they account for a lower biomass and energy
flow than euphausiids, copepods, and salps the information
on the species typical of the Southern Ocean (representative
of the shelled Thecosomata and non-shelled Gymnosomata)
has increased in recent years in response to concerns about
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FIGURE 4 | Metazoan zooplankton form integral components of food webs across a range of spatial and temporal scales within the Southern Ocean, providing a
link between air breathing predators (including seabirds, seals, and whales), pelagic and benthic communities. Food web connections between these communities
are partially determined by feeding strategies and migration patterns/intermittent forays of each zooplankton taxa. Processes associated with zooplankton feeding,
vertical migrations and forays, and mortality also contribute to vertical carbon flux, linking productive surface waters with deeper layers and the sediments.

the impacts of ocean warming and aragonite undersaturation
resulting from ocean acidification. This has revealed high
ingestion rates and distinct trophic roles of these orders, as
well as the potential importance of the thecosomes in carbon
flux and their vulnerability to ocean acidification (see Figuerola
et al., 2021). Pteropod community structure differs north and
south of the APF and their biomass is concentrated between
70 and 80◦S and in HNHC regions generally. They are
considered consistent and ocassionally dominant components of
zooplankton communities, collectively contributing to between
5 and 63% of zooplankton abundance in some locations.
There are also important food web dynamics among pteropods
communities as gymnosomes are preferential predators on the
predominantly herbivorous thecosomes (Weldrick et al., 2019).

Given the apparent importance of euphausiids, copepods,
salps, and pteropods it follows that, depending on their response
to direct and indirect changes in environmental drivers, they
have the potential to modify food webs and the structure and
functioning of whole ecosystems across various spatial and
temporal scales within the Southern Ocean. A focus on these taxa
is therefore integral to understanding, predicting and managing
the consequences of the impacts of anthropogenically driven
change on Southern Ocean ecosystems. There are of course
additional species within these taxa, as well as a range of
other taxonomic groups within Southern Ocean zooplankton
communities. These include amphipods, chaetognaths, and
other detritivorous or carnivorous groups whose predominance
increases with depth, such as formanifera, ostracods, cnidarians,

appendicularians, polychaetes, and decapods. Unfortunately, lack
of knowledge and data on their ecological dynamics and roles
in the structure and functioning of Southern Ocean ecosystems
precludes them from being considered in the present assessment.

EUPHAUSIIDS (FAMILY EUPHAUSIIDAE)

Antarctic krill
Antarctic krill (hereafter krill) is the most studied Southern
Ocean zooplankton species (Siegel, 2016). Their high biomass
(Siegel and Watkins, 2016), relatively large size (up to >60 mm,
Tarling et al., 2016a) and ability to feed on a wide range of prey
(e.g., phytoplankton, micro- and mesozooplankton, and detritus)
(Pakhomov, 2000; Schmidt et al., 2014, 2018) mean that they
have a significant influence on the structure and functioning
of Southern Ocean ecosystems. Where krill are abundant, they
support large populations of predators (Trathan and Hill, 2016)
ranging in size from mesopelagic fish (length c. 0.1 m, including
commercially harvested fish species) to baleen whales (length up
to c. 25 m). Krill therefore play an important role in regulating
the flow of nutrients to mid and higher trophic levels (Atkinson
et al., 2001; Whitehouse et al., 2008; Schmidt et al., 2011; Hill
et al., 2012). Many krill predators are non-specialists and can
adapt to short-term fluctuations in krill abundance by feeding on
alternative prey such as copepods, amphipods and fish (Croxall
et al., 1999; Waluda et al., 2012). However, the availability of
these alternative prey, their own dependence on krill and relative
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nutrient value, and the flexibility of predator diets will all play a
role in determining how changes in the distribution and biomass
of krill affects dependent predators and the wider ecosystem
(Ducklow et al., 2007; Murphy et al., 2007a, 2012a; Staniland et al.,
2007; Collins et al., 2008; Shreeve et al., 2009; Hill et al., 2012;
Watters et al., 2013; Klein et al., 2018; Saunders et al., 2019).
Krill also play a potentially important, but largely unquantified,
role in ocean biogeochemical cycles (Cavan et al., 2019) with
locally intense feeding, egestion and molting conveying megatons
of carbon per year from surface to deep waters. In the marginal
ice zone fecal pellet flux has been estimated to be 0.04 G tons
C year−1 (Belcher et al., 2019) and in the north Scotia Sea the
flux due to molted exoskeletons matches that due to fecal pellets
(Manno et al., 2020). Conversely, there is little evidence that
krill exert significant top-down control on primary production
(Atkinson et al., 2014) although at smaller scales predation
impacts may be intense and their nutrient excretion can promote
phytoplankton turnover rates. Krill is also the target of the largest
Southern Ocean fishery, which currently removes >400 k ton
year−1 (CCAMLR, 2020, see also Figure 5).

The importance of krill to the Southern Ocean ecosystem
and as a fisheries resource is reflected in a number of dedicated
reviews (Everson, 2000; Atkinson et al., 2012; Flores et al.,
2012a; Hill et al., 2016; Siegel, 2016; Kawaguchi and Nicol, 2020;
Meyer et al., 2020; McBride et al., 2021) and specific sections
in more general reviews (Constable et al., 2014b; Hunt et al.,
2016; Cavan et al., 2019; Saunders et al., 2019; Rogers et al.,
2020; Cavanagh et al., 2021) which consider its population status
and response to recent climate change. Despite this attention,
current understanding is based on a limited suite of observations
primarily from the Antarctic Peninsula and Scotia Sea regions
(hereafter the southwest Atlantic), with the majority of sampling
targeting the epipelagic zone (<200 m) (Atkinson et al., 2012).
Consequently, significant knowledge gaps and uncertainties
remain (Meyer et al., 2020).

Current Distribution
Siegel and Watkins (2016) provide a detailed review of the
distribution of krill. Although models (Cuzin-Roudy et al., 2014)
suggest that most of the 32 million km2 marine area south
of the APF constitutes suitable habitat (but see Murphy et al.,
2017), the species has only been observed in about 60% of
this area (Atkinson et al., 2008) with significant concentrations
observed mainly in shelf areas of the southwest Atlantic and the
Indian sectors (Mackintosh, 1973; Atkinson et al., 2008; Siegel,
2016). Knowledge about krill distribution is limited in some
locales such as the ice-covered western Weddell Sea and eastern
Ross Sea, which remain largely inaccessible to sampling. The
horizontal distribution of krill is patchy at the regional scale
(>1,000,000 km2) and there are between-regional differences in
its association with key habitat variables, including bathymetry
and sea ice, and in the influence of ocean currents (Nicol et al.,
2000a; Hofmann and Murphy, 2004; Atkinson et al., 2008; Jarvis
et al., 2010; Silk et al., 2016; Davis et al., 2017). For example,
high densities in the Indian sector occur primarily within
the seasonal ice zone whereas high densities in the southwest

Atlantic can also occur in ice free areas (Murphy et al., 2007a;
Atkinson et al., 2008, 2019).

Using data spanning 1926 to 2004, Atkinson et al. (2008)
estimated that 70% of the circumpolar krill stock was
concentrated in the sector between 0◦ and 90◦W (the southwest
Atlantic); however, several independent data sources suggest
that the circumpolar krill stock is now more evenly distributed
with average densities in the Atlantic sector being about twice
those seen in other sectors (Siegel and Watkins, 2016; Yang et al.,
2020). At finer spatial scales (<1000 km), krill can be highly
aggregated, with the majority of individuals occurring in large
swarms (over >300 m2) during summer (Murphy et al., 2004a,b;
Thorpe et al., 2007; Tarling et al., 2009; Meyer et al., 2017). The
degree of aggregation varies temporally and spatially, possibly
associated with food availability and predation risk.

Krill aggregation characteristics are also dependent
on demography. This is a long-lived species (potentially
surviving >5 years), which spends 1 year in its larval and juvenile
stages. Females and males reach maturity at approximately 2
and 3 years, respectively (Reiss et al., 2017). Distributions of the
different size, age or maturity categories appear to be dependent
on the spatially restricted habitats which support successful
spawning and first winter larval survival (Piñones and Fedorov,
2016; Siegel and Watkins, 2016; Meyer et al., 2017; Murphy
et al., 2017; Perry et al., 2019; Thorpe et al., 2019). North of the
Antarctic Peninsula adults appear to migrate offshore in late
spring/early summer to spawn in waters deep enough (1000 m)
to allow the developmental decent-ascent cycle, followed by
onshore migration for overwintering (Siegel, 1988; Trathan et al.,
1993; Reiss et al., 2017; Thorpe et al., 2019; Meyer et al., 2020).
Krill are also reported to undergo episodic dispersal in ocean
currents which might connect populations over large scales
(>1000 km) (Hofmann and Murphy, 2004; Thorpe et al., 2007;
Atkinson et al., 2008; Young et al., 2014).

In ice-free conditions krill is more abundant in epipelagic
waters (Marr, 1962; Lascara et al., 1999; Jarvis et al., 2010) but
the species also occurs in the mesopelagic zone (200 to 1000 m)
and has been observed in the bathypelagic zone (>1000 m). It
also associates with the seabed in both shallow and deep waters
where it feeds on phytodetritus (Schmidt et al., 2011). In ice-
covered waters, specialized sampling methods indicate that a
large part of the population is in the upper water column, with
some proportion of it concentrated at the ice-water interface
(Daly and Macaulay, 1988; Marschall, 1988; Daly and Macaulay,
1991; Brierley et al., 2002; Flores et al., 2012a).

Evidence of Past Change
Genetic evidence suggests that krill populations underwent
a significant increase over the past 100,000 years, a period
that was largely glacial (Goodall-Copestake et al., 2010). More
recent changes in population size, demographic structure and
distribution have primarily been documented for the southwest
Atlantic where regular monitoring was initiated in the early
1990s. However, this monitoring covers only a small proportion
(<5%) of the species’ habitat (Hill et al., 2016). There is also
a composite dataset, KRILLBASE, which compiles all available
circumpolar net sampling data for most years since 1976 as well as
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FIGURE 5 | Catches of Antarctic krill (Euphausia superba) from 1970 to 2018, derived from the Commission for the Conservation of Antarctic Marine Living
Resources (CCAMLR) Statistical Bulletin 2019. (A) Shows total accumulated catch density over this period as log10 (catch density in tons.km−2) (see colour ramp at
bottom). Background is ocean depth in meters (bottom left legend on map). Black lines show boundaries of Marine Ecosystem Assessment for the Southern Ocean
(MEASO) areas as depicted in Figure 1. Grey lines show a graticule (see Grant et al., 2021). (B) Shows time series of catches of Antarctic krill in each of the MEASO
areas (log10 transformed Y-axis). Legend embedded in plot indicates line types for each area, where acronyms relate to MEASO sectors (first two letters) and zones
(last letter). Sectors are Atlantic (AO), Central Indian (CI), East Indian (EI), West Pacific (WP), and East Pacific (EA). Zones are Antarctic (A), Subantarctic (S), and
Northern (N).

some years in the 1920s, 1930s, and 1950s (Atkinson et al., 2017).
Regional scale krill biomass in the southwest Atlantic sector has
only been surveyed twice, in 2000 and 2019. These two surveys
of an area of c. 2 M km2 provided similar biomass estimates
(60.3 and 62.6 Mt, respectively) (SC-CCAMLR, 2010; Krafft et al.,
2021).

Various indices have been used to examine variability and
change in krill population size in the southwest Atlantic over
the past several decades. These indices include mesoscale
(<125,000 km2) biomass estimates (Fielding et al., 2014; Kinzey
et al., 2018), estimates of numerical density (number per unit sea
surface area) at various spatial scales (Loeb et al., 1997; Atkinson
et al., 2004, 2019; Saba et al., 2014; Loeb and Santora, 2015),
and indices derived from time series of predator performance
(Watters et al., 2020), predator diets (Forcada and Hoffman,
2014) and isotope signatures (Huang et al., 2011), and anecdotal
evidence based on personal field experience (Watters et al., 2013).
Some studies indicate a declining trend in krill population size
(Loeb et al., 1997; Atkinson et al., 2004, 2019; Huang et al., 2011;
Trivelpiece et al., 2011; Forcada and Hoffman, 2014; Loeb and
Santora, 2015; Yang et al., 2020) while other studies suggest a
more stable trajectory in this sector (Fielding et al., 2014; Saba
et al., 2014; Kinzey et al., 2015, 2018; Cox et al., 2018).

Several studies have identified environmental correlates of
krill distribution, recruitment, and population size indices (Loeb
et al., 1997; Atkinson et al., 2004, 2019; Huang et al., 2011;
Trivelpiece et al., 2011; Fielding et al., 2014; Forcada and
Hoffman, 2014). These correlates include sea ice in both the

southwest Atlantic and Indian Ocean sectors (Loeb et al., 1997;
Nicol et al., 2000a,b; Atkinson et al., 2004; Braithwaite et al.,
2015) and two broad indicators of ocean circulation and climate
variability (El Niño Southern Oscillation, ENSO, and Southern
Annular Mode, SAM) in the former (Saba et al., 2014; Loeb
and Santora, 2015; Atkinson et al., 2019). Some studies suggest
mechanisms by which climate fluctuations propagate through the
ecosystem; first affecting regional physics which in turn affect
krill recruitment and dispersal, driving population dynamics and
hence abundance and biomass (Murphy et al., 1998; Murphy
et al., 2007a,b; Thorpe et al., 2007; Saba et al., 2014). These
relationships suggest that population changes might be driven, in
part, by climate change (Atkinson et al., 2004, 2019; Huang et al.,
2011; Trivelpiece et al., 2011; Forcada and Hoffman, 2014).

Limited sampling in the Indian Ocean sectors has not
provided any evidence of a trend in that location (Nicol et al.,
2000a; Atkinson et al., 2004; Jarvis et al., 2010). Yang et al. (2020)
conducted a circumpolar analysis of the available data. They
concluded that a detectable decline in krill numerical density
(number per m2) was specific to the Atlantic sector, whereas
densities in the other sectors changed little over time, resulting
in a krill population that is now more evenly distributed around
the continent than it was in the past.

Resolving the uncertainty in conclusions about population
trajectories, and the influence of spatial scale, time series
length and index type (i.e., different indices based on
biomass, abundance, population structure of predators)
on these conclusions, is a current key research priority
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(Meyer et al., 2020). It is clear that any reported trend applies
only to the time period analyzed and additional evidence is
necessary to distinguish it from variability operating over longer
timescales (Loeb and Santora, 2015). It is also clear that, even
in the southwest Atlantic sector, there are spatial differences
in observed patterns of krill variability and change (Atkinson
et al., 2004, 2019; Hill et al., 2016; Cox et al., 2018). A recent
study suggests some coherence in these patterns, indicating
that the krill distribution within this sector has contracted
southwards since the 1970s, with a decline in numerical density
near their northern limit, and more stability in southern shelf
areas (Atkinson et al., 2019).

Response to Drivers
Several important perturbations have affected the Southern
Ocean ecosystem over the past two centuries. These include
the sequential depletion of krill predators, which began with
Antarctic fur seals in the late 18th century and progressed to
baleen whales and several finfish stocks in the 20th century
(Croxall and Nicol, 2004; Grant et al., 2021). They also include
a prolonged period of warming and sea ice loss that occurred in
the southwest Atlantic sector in the 20th century (Whitehouse
et al., 2008; Stammerjohn et al., 2012; Maksym, 2019; Meredith
et al., 2019), albeit with a hiatus over the last two decades (see
Morley et al., 2020). Also, commercial harvesting of krill began
in the 1970s and gradually became concentrated in the southwest
Atlantic sector, moving further south and becoming more winter
focused over time (Kawaguchi and Nicol, 2020; Meyer et al.,
2020). Of these changes, krill fishing probably had the least
impact on krill populations at the circumpolar and regional
scales. Catches (circumpolar maximum 528 kt y−1) have always
been <1% of available biomass estimates at both of these scales
(Hill et al., 2016; Nicol and Foster, 2016; Siegel and Watkins,
2016). Nonetheless, recent studies suggest that fishing can impact
the density of krill at small scales (<10 km) and that these effects
can propagate through to their predators (Santa Cruz et al., 2018;
Krüger et al., 2020; Watters et al., 2020).

The ecosystem effects of predator depletion are potentially
complex as recovery occurs at different rates which can alter the
balance of predators over long timescales (Murphy, 1995; Croxall
and Nicol, 2004). While there is a long-established expectation
that increased predation negatively impacts krill populations
(Laws, 1977), there is also a hypothesized positive feedback
between baleen whale and krill populations. This states that pre-
exploitation whale and krill populations may have consumed and
recycled larger quantities of iron thereby enhancing overall ocean
productivity and the production of krill (Smetacek, 2008; Nicol
et al., 2010; Henley et al., 2020). Changes to predator populations
as a result of past perturbation are still ongoing (Branch et al.,
2007; Branch, 2011; Zerbini et al., 2019) and the full implications
of these changes for krill populations remain to be explored.

The most reliable environmental predictor of krill biomass
and numerical density discovered to date is sea floor bathymetry
(Atkinson et al., 2008; Hill et al., 2009; Silk et al., 2016). Densities
are generally highest over island shelves and shelf breaks and
decrease offshore, although the lower densities offshore occupy
a greater area and constitute most (up to 80%) of the observed

biomass (Atkinson et al., 2008; Hill et al., 2009; Silk et al.,
2016). However, distribution and abundance are also influenced
by a suite of complex associations with other environmental
characteristics, including water temperature, ocean acidification
(OA), food availability, frontal activity, and the presence of sea
ice. Changes in any of these variables have implications for krill
populations which are discussed below.

Adult krill, within their optimal thermal range (0–3◦C
Atkinson et al., 2006; Tarling et al., 2006), are able to grow
and reproduce if metabolic demand is met by food intake
(Atkinson et al., 2006; Flores et al., 2012a; Hill et al., 2013),
but their performance is likely to decrease at temperatures
>3◦C due to thermal stress (Constable and Kawaguchi, 2018).
Larval and juvenile krill, with lower energy reserves compared
to adults, are more vulnerable to extended periods of starvation
(Hagen et al., 2001; Yoshida et al., 2009). Temperatures >3◦C
also negatively impact embryo development causing a rapid
decline in egg hatching rate and increasing malformation
(Perry et al., 2019, 2020).

The reported relationships between krill numerical density
and sea ice extent in the southwest Atlantic sector (Atkinson
et al., 2004, 2019) and between the circumpolar distributions
of both krill and sea ice (Brierley et al., 2002) suggest that
population status is closely linked to sea ice conditions.
Systematic observations of krill’s association with sea ice began
in the late 20th century (e.g., O’Brien, 1987; Daly and Macaulay,
1988; Marschall, 1988; Stretch et al., 1988; Daly and Macaulay,
1991). These studies have revealed a rich variety of contrasting
behaviors at different life history stages, in different locations,
and at different times of the year, which indicates a high degree
of plasticity. In a region of the Lazarev Sea with persistent sea
ice cover, the horizontal distribution of krill is related to ice
thickness and a large part of the population remains in the upper
two meters of the water column throughout the year (Flores
et al., 2012a, 2014). Elsewhere, in the Scotia-Weddell seas and
the Antarctic Peninsula, typically only a proportion of larval
and juvenile stages are observed on the under-surface of sea
ice, while the rest of the population is distributed throughout
the water column (Daly and Macaulay, 1991; Lancraft et al.,
1991; Quetin and Ross, 1991; Daly and Zimmerman, 2004;
Meyer et al., 2017).

Overwintering larval survival is a critical bottleneck which
can affect recruitment and population size (Daly, 1990; Flores
et al., 2012b). Cracks and crevices in sea ice provide a refuge
from predation, which enhances krill survival (Meyer et al., 2009,
2010, 2017; Schaafsma et al., 2017). Survival is also enhanced
by sea ice biota which are a key food source for krill larvae
which, unlike adults, lack the lipid reserves to survive winter
without feeding (Quetin et al., 1994; Meyer et al., 2002; Meyer,
2012). In the spring melting sea ice promotes phytoplankton
production and releases ice algae into the water column, thereby
enhancing the food supply available to krill in open water
(Schmidt et al., 2018). Ice-conditioned spring phytoplankton
blooms fuel the growth and maturation of early life stages,
as well as adult nutrition essential for gonadal development
and egg production. Consequently, this productivity supports
enhanced larval survival and adult reproductive output (Schmidt
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et al., 2012; Kohlbach et al., 2019). Nonetheless while sea ice is
important it is not always essential for first winter survival. Walsh
et al. (2020) found that extensive sea ice does not guarantee a
strong recruitment and that in the absence of sea ice larval krill
can still survive in the water column.

Future Prognoses
Flores et al. (2012b), Murphy et al. (2018), and McBride
et al. (2021) provide detailed reviews of potential direct and
indirect effects of climate change on krill. These include the
negative impacts of OA on the embryonic and post-larval stages
(Kawaguchi et al., 2013; Ericson et al., 2018) and of decreased
duration and extent of the seasonal sea ice refugia and feeding
grounds (Meyer, 2012; Kohlbach et al., 2017; Meyer et al.,
2017; Schaafsma et al., 2017). They also include changes to
population size and the quality of krill habitats resulting from
ocean warming and changes in both their predators and food
sources (Wiedenmann et al., 2008; Hill et al., 2013; Saba et al.,
2014; Piñones and Fedorov, 2016; Murphy et al., 2017; Klein et al.,
2018; Tulloch et al., 2018; Veytia et al., 2020). Such changes might
be modified by concurrent changes in predator populations
or fishery catch.

The effects of future OA on krill biology are unclear.
Embryonic development and hatching are negatively affected by
CO2 at near future levels pCO2 >1000 µatm (Kawaguchi et al.,
2013). Conversely adult krill are resilient to these levels and can
actively maintain the acid-base balance of their body fluids at
pCO2 >1000 µatm (Ericson et al., 2018). The only study on
combined impacts of acidification and increased temperature to
date suggests shorter-term (48 h) effects were primarily pH driven
whereas longer-term (21 days) effects on growth and survival
were strongly driven by temperature with little to no pH effect
(Saba et al., 2021).

Mechanistic understanding of the interaction between the
larval and juvenile stages and ice is still limited (Meyer, 2012;
Kohlbach et al., 2017; Meyer et al., 2017; Schaafsma et al., 2017),
and therefore the implications of ice loss for larval survival,
recruitment and krill population size and distribution are not
clearly understood (Murphy et al., 2018). Melbourne-Thomas
et al. (2016) suggest that increased instability in sea ice will
benefit krill by increasing the availability of larval overwintering
habitat. Conversely, sea ice decline may impact phytoplankton
community structure, reducing the contribution of large lipid-
rich diatoms relative to smaller, less easily filtered and less
nutritious taxa (e.g., cryptophytes Deppeler and Davidson, 2017;
Pinkerton et al., 2020) and potentially reducing krill feeding
efficiency, recruitment, and population size (Saba et al., 2014).
Groeneveld et al. (2015) suggest that reductions in sea ice extent
could lead to a poleward contraction of the krill population.

Several studies have examined the potential direct effects of
ocean warming on krill habitat quality, suggesting that habitat
contraction is likely as the temperatures at the northern fringes of
their range exceed physiological limits (Wiedenmann et al., 2008;
Hill et al., 2013; Murphy et al., 2017; Klein et al., 2018; Veytia
et al., 2020). Spatial variability in warming and the possibility of
localized increases in primary production could enhance habitat
quality in some restricted regions, but these enhancements are

unlikely to offset degradation elsewhere (Hill et al., 2013; Murphy
et al., 2017; Veytia et al., 2020). Climate change impacts are
also likely to reduce the availability of reproductive habitat
(Piñones and Fedorov, 2016).

The physiological cycle of adult krill is tightly synchronized
with photoperiod (Höring et al., 2018; Piccolin et al., 2018)
such that reproduction and larval development coincide with
the seasonal cycles of food availability (Kawaguchi et al., 2007;
Kawaguchi, 2016). Model projections suggest that the timing and
duration of such events could shift with future climate change
and thus negatively impact krill population size across its current
distributional range (Quetin et al., 2007; Veytia et al., 2020).

The populations of several baleen whale species dependent on
krill in Southern Ocean feeding grounds are recovering (Branch
et al., 2007; Branch, 2011; Zerbini et al., 2019). Model-based
projection studies suggest that climate change could delay their
recovery due to reduced krill availability (Klein et al., 2018;
Tulloch et al., 2019). However, the hypothesized positive feedback
loop whereby nutrient recycling by increased whale populations
could enhance primary production and support increased krill
stocks (Smetacek, 2008; Lavery et al., 2010; Nicol et al., 2010) may
counteract this impact.

Thus the prognosis for krill is highly uncertain but the
majority of studies suggest that climate change is likely to increase
the physiological stress on both early life stages and adult krill.
These effects may be compounded by loss and fragmentation of
spawning and overwintering habitat. In the worst case, krill may
eventually become restricted to a limited number of areas suitable
for successful spawning, survival and recruitment (i.e., those
with sufficient sea ice cover and reliable seasonal productivity
cycles, see Hofmann and Hüsrevoğlu, 2003; Kawaguchi et al.,
2007; Kawaguchi, 2016; Thorpe et al., 2019). Reductions in krill
biomass and distribution are also likely to impact krill predator
populations (Hill et al., 2013; Klein et al., 2018). In projection
studies the severity of the impacts on krill and its predators
generally increases with the severity of climate change (e.g., Hill
et al., 2013; Kawaguchi et al., 2013; Klein et al., 2018).

Resilience
Krill is well known for its behavioral plasticity and variations in
life history strategies that have allowed it to flourish in the highly
variable Southern Ocean environment and to adapt its pattern
of habitat use according to seasonally localized food availability.
This plasticity is demonstrated by the high levels of variability
in krill’s association with and apparent dependence on sea ice
(Meyer et al., 2017) and by rapid acclimation of individuals to
the effects of reduced pH (Saba et al., 2021). Adults are able to
survive long periods without food using a combination of lipid
reserves and reductions in body size (Quetin et al., 1994; Tarling
et al., 2016b). Krill have successfully colonized a range of habitats
from the ocean surface to abyssal depths, and from continental
ice shelves to the APF (Atkinson et al., 2008). This plasticity
confers considerable resilience and is likely to ensure the survival
of krill as a species. Current understanding of resilience in krill is
based primarily on observations of the diversity of krill behaviors
and habitats or experiments on individuals. Understanding of
the consequences for krill populations is limited. For example,
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feeding on phytodetritus on the seabed (Schmidt et al., 2011)
might allow individuals to avoid adverse conditions closer to
the surface. Whether this is sufficient to sustain the current krill
population depends on many factors, including the availability
and nutritional value of the novel food source and connectivity
to other life history critical habitats, which remain to be explored.

Other Euphausiids
Aside from the Antarctic krill, there are twelve other euphausiid
species in the Southern Ocean (Cuzin-Roudy et al., 2014).
For most of these species there is extremely limited data on
their biomass relative to Antarctic krill but their biomass are
potentially orders of magnitude lower (however, see Wallis
et al., 2020). Two species, E. crystallorophias and Thysanoessa
macrura, are the most common taxa among this group, and are
abundant and ecologically important as prey for upper trophic
levels (Ainley et al., 2004). Others are common members of
the pelagic community (E. frigida, E. triacantha, E. vallentini,
and T. vicina) and may play important but unknown ecological
roles in some regions of Antarctica near or south of the APF
(e.g., E. triacantha, Liszka et al., 2021), or the broader sub-
Antarctic region (e.g., T. vicina). The patterns of occurrence of
these euphausiids are generally defined by the latitudinal and
bathymetric features of the Southern Ocean, from the neritic
environments of the high Antarctic to the pelagic areas north
of the APF (Cuzin-Roudy et al., 2014). Many of these taxa
undergo large diel migrations, from deep waters during the day
to shallower waters during the night (Taki and Hayashi, 2005;
Ono et al., 2011; Liszka et al., 2021). Additionally, these taxa
vary in their life history strategy and their degree of omnivory.
For example, T. macrura has adaptations including a pair of
elongated second legs (thoracic legs) that can be used to catch
zooplankton, while E. crystallorophias eat sea ice algae and sea ice
microbiota. The variety of feeding strategies suggests that food
web interactions amongst these taxa and the broader Antarctic
ecosystem will vary greatly with climate change. Owing to their
biomass some of these euphausiid species also undoubtedly play
an important role in biogeochemical cycling (Guglielmo et al.,
2009), however, this has yet to be quantified. Here we focus on
the most common and best understood of these other euphausiid
taxa, E. crystallorophias and T. macrura.

Euphausia crystallorophias
Crystal krill is smaller than Antarctic krill, reaching a maximum
length of∼40 mm over its 4 to 5-year lifespan (Siegel, 1987). The
species typically feeds on small particles in the water column,
including phytoplankton, microzooplankton (Kohlbach et al.,
2019) and small zooplankton (O’Brien, 1987; Pakhomov and
McQuaid, 1996). In addition, juveniles and adults have been
observed on the sea floor feeding on phytodetritus (Deibel and
Daly, 2007). Crystal krill is also an important prey item for upper
trophic levels in the coastal environments of the high Antarctic
(Thomas and Green, 1988; Pakhomov, 1997; Ainley et al., 2004).

Current Distribution
Crystal krill is a circumpolar high Antarctic species that replaces
Antarctic krill in shallow (<500 m) neritic environments
(Thomas and Green, 1988; Pakhomov, 1997; Ainley et al., 2004)
covered by sea ice or in open water areas such as polynyas. It has

been found as far north as the northern Antarctic Peninsula (Loeb
et al., 2009), but has its greatest densities farther south than about
70◦ (Mauchline, 1969). It is common around the coastal areas
of east Antarctica, and the Amundsen Sea (La et al., 2015) and
is also abundant on the shelves of the Weddell (Boysen-Ennen
and Piatkowski, 1988; Boysen-Ennen et al., 1991) and Ross Seas
(Sala et al., 2002; Murase et al., 2006; Davis et al., 2017). Like other
euphausiids, E crystallorophias undergoes diel vertical migrations
(Conroy et al., 2020) that may deepen in winter, or in the presence
of krill predators (Ainley et al., 2015).

Because the oceanography of coastal environments varies
greatly around the Antarctic continent, crystal krill populations
are largely self-contained, and some modelling studies have
shown that population structure may be effectively aided by
the currents in the areas of spawning (Piñones et al., 2016) or
retained in areas because of the physical processes unique to
the coastal ecosystems around the continent. However, genetic
studies have shown that the genetic structure is not solely a
function of distance between populations, suggesting that small
scale processes are also important in the population structure in
different parts of the Antarctic (Jarman et al., 2002).

The neritic nature of crystal krill ties reproduction and
population dynamics to the seasonal coastal sea ice conditions
including the opening of polynyas. Spawning starts under fast
ice but peaks during coastal polynya breakout (Pakhomov and
Perissinotto, 1996). Crystal krill eggs are neutrally buoyant and
concentrate in the surface layers and larvae are associated with
sea ice but appear to have a different vertical distribution (either
shallower or deeper) than E. superba larvae (Pakhomov and
Perissinotto, 1996; Daly and Zimmerman, 2004; Wiebe et al.,
2011), which may reduce bottom predation of eggs by shelf
benthos and grazing competition between these morphologically
similar species, in areas where they overlap. The larvae are also
abundant in inshore waters where they develop over the summer
and into the following winter, taking about twice as long as
E. superba to reach stage furcilia CIV (Kirkwood, 1996) and
recruit to juvenile stages in spring (Pakhomov and Perissinotto,
1996; Daly and Zimmerman, 2004).

The biomass of crystal krill can be high in some areas
around the Antarctic. For example, La et al. (2015) measured
ice krill biomass in the Amundsen Sea polynya and found mean
biomasses of 16 g fresh mass m−2, an order of magnitude higher
than those found in the Ross Sea (Sala et al., 2002) and of more
similar magnitude to those reported for Antarctic krill. Other
regions also had high biomass (Boysen-Ennen et al., 1991). In
some cases, the regional peculiarities that make some polynyas
important for crystal krill consequently make this species more
abundant and these areas important for high latitude food webs
(Pakhomov and Perissinotto, 1996).

Evidence of Past Change
From an evolutionary perspective E. crystallorophias is highly
adapted to the high Antarctic ecosystem and may be constrained
in a warming future owing to some genetic adaptations. Between
40 and 400 kya, E. crystallorophias underwent a population crash
or directional selection to cold adaptation over time owing to
periods of glaciation and deglaciation that resulted in the loss of
the genetic diversity in its heat shock proteins. The diversity of
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heat shock proteins is thought to provide phenotypic plasticity to
species to tolerate and adapt to changing environments (Cascella
et al., 2015; Papot et al., 2016).

There are few long-term studies of crystal krill with which
to draw conclusions about past changes. Along the northern
Antarctic Peninsula, where the U.S. Antarctic Marine Living
Resources (AMLR) Program has sampled since the early 1990s,
crystal krill are sporadically found around the South Shetland
Islands and also on the west side of the peninsula but the data are
not sufficient to build a time series to examine changes in their
temporal abundance (U.S. AMLR unpublished data). Further
west along the Antarctic Peninsula, there is some evidence
for variability in crystal krill populations, in conjunction with
variability in other ice-dependent taxa like silverfish (Ross et al.,
2014). A 30 year time-series, from 1990 through to 2019, shows
an increase in crystal krill abundance in the southern part of
that study area, and is attributed to an increase in primary
production or more favorable timing of spring sea ice retreat for
larvae (Steinberg et al., 2015). Along other coastal regions of the
Southern Ocean, patterns of distribution are similar over time,
reflecting the neritic, polynya, and ice-covered waters that have
shaped the life history of this important species. In the Prydz
Bay region of the East Antarctic (Pakhomov and Perissinotto,
1996; Yang et al., 2011) and in the Ross Sea, surveys of crystal
krill distribution conducted over the last several decades are not
sufficient to document changes in abundance or biomass but do
show considerable variability.

Response to Drivers
The high Antarctic, neritic nature of crystal krill suggests
that its productivity and response to environmental
drivers is tied to ecological adaptations associated with
the oscillating regime of shelf environments and may be
strongly influenced by the dynamics of coastal polynyas
(Pakhomov and Perissinotto, 1996).

Future Prognoses
There have been few assessments of the likely trajectory for
E. crystallorophias under different climate change scenarios.
However, because crystal krill is a high Antarctic species, and has
a narrow thermal habitat constrained to waters≤2◦C (Guglielmo
et al., 2009), this makes crystal krill stocks vulnerable to climate
change. Given their lower diversity of heat shock protein
systems, E. crystallorophias may be physiologically less resilient
to thermal shocks, so in geographic areas where ocean surface
and subsurface areas are warming it could be more vulnerable to
climatic change compared to Antarctic krill (Cascella et al., 2015;
Papot et al., 2016).

Changes in sea ice extent and duration, especially at the
northern limits of its range, are likely to negatively impact its
preferred habitat greatly. Declines in the extent and duration of
sea ice (Stammerjohn et al., 2008, 2012) or the timing of closing
of polynyas will impact both larval and juveniles stages that rely
on seasonal primary production in their first year of life, and will
impact post-larvae perhaps by limiting their ability to accumulate
lipids necessary for reproduction.

Simulations of future changes in sea ice concentrations
suggest that the extreme loss of spawning habitat might greatly

diminish the reproductive success of crystal krill (Smith et al.,
2014). In some areas, simulations of future temperature, ice
and vertical mixing depths on the Ross Sea continental shelf
suggested that stratification will increase and favor diatoms,
which likely would allow for enhanced ingestion by crystal
krill, but due to the loss of ice (and spawning habitat) in the
next 100 years, populations would decrease significantly (Smith
et al., 2014). Further simulations suggested that the seasonal
structure of phytoplankton production may change, with a shift
toward Phaeocystis antarctica, a colonial haptophyte, but that this
production would be largely unavailable to crystal krill (Kaufman
et al., 2017). Both future scenarios suggest a mechanism for the
decline in crystal krill success.

Changes in sea ice dynamics along the coast and warming
of waters would, in general, create additional stresses on this
thermally constrained taxon directly by affecting its habitat but
also indirectly as increased water temperatures could make some
environments more hospitable to other species like Antarctic krill
or T. macrura. Interactions with these and other species (e.g.,
silverfish) are unknown. Continued study of the biology and
ecology of crystal krill is warranted, and the establishment of
monitoring programme in selected high Antarctic environments
could provide data to better constrain projections about the
future status and trends of this species and the animals that are
dependent on it.

Resilience
The limited (thermal and geographical) range of crystal krill
(Guglielmo et al., 2009) and the genetic adaptations that made
it successful during periods of increased glaciation are likely
to negatively impact this species in the future (Cascella et al.,
2015; Papot et al., 2016). The capacity to move to other areas
is undoubtedly low, and its neritic nature means that this taxon
is not likely to be resilient to directional climate change as the
quality of physical habitat at lower latitudes it occupies declines
over the foreseeable future (Mackey et al., 2012; Steinberg
et al., 2015). Areas in the high Southern Ocean (Pakhomov and
Perissinotto, 1996), such as in the Ross Sea, the Amundsen Sea
(La et al., 2015) or the southern most parts of the Weddell
Sea, where reproductive polynyas may open earlier, may provide
refugia for some populations of crystal krill, but lower latitude
areas at the limits of its range may result in local extinction of
some populations.

Thysanoessa macrura
T. macrura is likely the most numerically abundant euphausiid
species in the Southern Ocean, although its circumpolar biomass
is unknown (Nordhausen, 1992). It is smaller than Antarctic krill
and has a maximum size similar to crystal krill (∼42 mm) but
with a shorter lifespan (<4 years) (Siegel, 2000; Haraldsson and
Siegel, 2014; Driscoll et al., 2015). T. macrura is omnivorous
but more predatory than E. superba (Hagen and Kattner, 1998),
feeding on phytoplankton, microzooplankton, and copepods, as
well as Antarctic krill larvae (Hopkins, 1985; Hopkins and Torres,
1989; Driscoll, 2019). Through its omnivorous diet, it can receive
significant parts of its carbon budget from ice algae (Kohlbach
et al., 2019). T. macrura is also an important prey item for upper
trophic levels, including both midwater and demersal fish, marine
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mammals and seabirds. T. macrura’s position as a grazer, predator
and prey means that the species’ trophic position contributes
significantly to various energetic pathways.

Current Distribution
In contrast to the thermally constrained and high Antarctic
life history of crystal krill, T. macrura is a substantially more
cosmopolitan taxon (Cuzin-Roudy et al., 2014; Pinkerton et al.,
2020). T. macrura is by far the most-identified euphausiid
species in Southern Ocean Continuous Plankton Recorder (SO-
CPR) survey (Pinkerton et al., 2020). It is found in pelagic
and coastal waters across a wide thermal gradient, from near
freezing water (−1.8◦C) to warm waters (10◦C) in the northern
latitudes where it overlaps with its congener T. vicina (Hempel
and Marschoff, 1980). T. macrura is ubiquitous and relatively
abundant throughout its range, without the concentration in
the Atlantic sector that is evident in E. superba (McLeod
et al., 2010; Yang et al., 2020). In some areas its average
abundance can be higher than that of Antarctic krill (Loeb
and Santora, 2015; Steinberg et al., 2015). Few zooplankton
surveys conduct net tows below 200 m, however, those that have
found that T. macrura has a deeper median depth distribution
than Antarctic krill (Lancraft et al., 1989; Taki et al., 2008;
Marrari et al., 2011) suggesting that most estimates of T. macrura
abundance, especially near surface methods such as CPR, are
generally biased low. T. macrura also tends to be form less dense
and more spatially distributed aggregations during winter, rather
than forming dense aggregations and concentrating inshore
like E. superba (Nordhausen, 1994; Loeb and Santora, 2015;
Driscoll, 2019).

Evidence of Past Change
Like most other zooplankton taxa that are not directly targeted
for long-term studies, the temporal patterns in T. macrura
abundance are less well defined than the spatial patterns of its
distribution. In the Prydz Bay Region (Yang et al., 2011) and along
the Antarctic Peninsula temporal patterns in abundance showed
considerable variability over the past three decades (1992–2013)
(Loeb and Santora, 2015; Steinberg et al., 2015; Driscoll, 2019)
but do not show any trends indicative of changing population
size. There is some indication that their abundance along the
Peninsula may be related to changing climate drivers because
growth has been correlated with temperature; however, the
drivers of variability in the population are unknown. Pinkerton
et al. (2020) found evidence of small (∼0.2%/year) increasing
trends of habitat suitability for T. macrura between 1997 and
2018 (see also Section “Past Changes in Zooplankton: A Modelled
Example Using Continuous Plankton Recorder Data”).

Response to Drivers
T. macrura’s wide latitudinal distribution suggests it may be
more adaptable to changes in its environment, particularly
increasing ocean temperature, than other Southern Ocean
euphausiids. T. macrura has shown temperature dependent
growth, with slower growth in colder Weddell Sea influenced
waters compared to warmer Antarctic Circumpolar Current
(ACC) waters (Driscoll et al., 2015). In contrast to E. superba’s
dependence on summer primary production for reproductive
success, T. macrura spawn in winter and early spring using wax

ester lipids to support egg development (Hagen and Kattner,
1998; Wallis et al., 2017). This life history strategy decouples
production from the spring bloom which is required for gonad
development in E. superba. T. macrura also have a faster larval
development rate than the Euphausia species (Nordhausen,
1992; Haraldsson and Siegel, 2014; Wallis, 2018) where later
stage larvae are found during summer (Makarov, 1979) and
recruitment to juvenile stages has been observed by autumn,
suggesting changes in abundance are likely to be driven by
direct forcing on the populations (Marrari et al., 2011). Loeb and
Santora (2015) also found that postlarval T. macrura abundances
near the north Antarctic Peninsula were correlated with lagged
ENSO conditions.

Future Prognoses
Temperature dependent growth models for T. macrura indicate
increased growth under future climate change scenarios (Driscoll
et al., 2015; Richerson et al., 2015). These models also indicate
that the biomass per recruit may increase in the future and
surpass that of E. superba in some areas (Richerson et al., 2015).
Habitat suitability modelling for euphausiids sampled by the
CPR, in which catches are dominated by T. macrura (Pinkerton
et al., 2020) suggested that increasing environmental suitability
between the APF and the northern annual limit of sea ice were
related to surface warming and to deepening of the mixed layer
depth, whereas predicted decreases in the Pacific sectors were
related to shallowing mixed layer depths. Further north, increases
in euphausiid environmental suitability were primarily correlated
to increased primary production.

Resilience
Thysanoessa macrura may be relatively resilient to the climatic
changes and future environments in the Southern Ocean over the
next 50 to 100 years (Richerson et al., 2018). This resilience may
be driven by several factors: its wide thermal tolerance (Driscoll
et al., 2015), its omnivorous diet (Phleger et al., 2002), its highly
flexible life cycle, and its independence from the spring bloom
and sea ice cycle for reproductive success (Hagen and Kattner,
1998; Haraldsson and Siegel, 2014; Wallis, 2018). However, future
climate-influenced changes in prey communities, predators,
competitors, and other biotic conditions still may have the
potential to impact this species in ways that are difficult to predict.
Because of its relatively cosmopolitan distribution, flexible life
history and high abundance, future studies should focus on
T. macrura’s role in shunting energy around the short and generic
phytoplankton-krill-predator food chain model, especially in
open ocean environments in the northern extent of its range.

COPEPODS (SUBCLASS COPEPODA)

At the Southern Ocean scale, copepods have a biomass at least
equivalent to that of Antarctic krill, with a total production far
exceeding that of krill (Conover and Huntley, 1991; Voronina,
1998; Shreeve et al., 2005). Their biomass is dominated by large
species of the genera Calanoides, Calanus, Rhincalanus, and
Metridia, which perform varying degrees of seasonal vertical
migration between summer feeding grounds in the epipelagic
zone and overwintering depths below 200 m. The numerically
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dominant smaller species have a diversity of life history strategies,
including the small, egg-brooding, epipelagic cyclopoid Oithona
similis (Cornils et al., 2017), seasonal migrants such as
Ctenocalanus citer (Schnack-Schiel and Mizdalski, 1994) and
sea ice dependent genera such as Drescheriella, Paralabidocera,
and Stephos (Schnack-Schiel et al., 1995; Tanimura et al., 1996;
Swadling et al., 2004). As a group, copepods provide food
for a diversity of both invertebrate and vertebrate predators.
Invertebrates are thought to be particularly important copepod
predators (Hill et al., 2012), including chaetognaths, amphipods,
euphausiids, and cnidarians. Among the vertebrate predators,
smaller myctophid fish are particularly important predators of
the larger copepods (Collins et al., 2008; Shreeve et al., 2009;
Saunders et al., 2019), but also among the air-breathing predators,
small petrels include an important component of copepods in
their diet. Commensurate with their high circumpolar biomass
and production relative to krill and salps, their grazing impacts
are also substantial (Hill et al., 2012). In generalizing about the
trophic roles of whole taxonomic groups such as copepods, it is
important to emphasize the large diversity in size and feeding
modes. The major size increase of each species through its
ontogeny will expand this overall size range even further. Thus,
large predatory groups including species such as Paraeuchaeta
antarctica, feed on other copepods, and intraguild predation
among the copepods is likely to be important (Hopkins, 1985;
Hopkins and Torres, 1989). In addition to the raptorial feeding
displayed by P. antarctica, copepod species use suspension and
ambush feeding modes, with variations in the contribution of
motile cells, non-motile cells, and detrital particles in the diet.

Current Distribution
Copepods typically have circumpolar distributions, similar to
other Antarctic zooplankton groups. Latitudinally, a series of
circumpolar fronts mark water mass discontinuities and help to
define their thermal envelopes. The circumpolar distributions
of the dominant copepods were first charted by the Discovery
Expeditions of the 1920s and 1930s (Ommanney, 1936; Andrews,
1966) and then by the extensive Soviet expeditions (e.g.,
Voronina, 1972) with large scale coverage recently provided by
the SCAR SO-CPR survey that began in 1991 (Hosie et al., 2003;
McLeod et al., 2010; Takahashi et al., 2011; Pinkerton et al.,
2020). These distributions have been further resolved by national
survey programmes (e.g., Pakhomov and Froneman, 2000; Ward
et al., 2006, 2012; Swadling et al., 2010). However, despite the
high degree of collaboration over many areas of the Southern
Ocean (e.g., the Pacific sectors), many remain under-studied
due to their inaccessibility or lack of regular voyages (McLeod
et al., 2010). Based on SO-CPR measurements, habitat suitability
modelling has been used to “fill in” these spatial sampling gaps
and provide insights into seasonal and long-term variability of
copepods in the Southern Ocean (Pinkerton et al., 2010, 2020)
(see also Section “Past Changes in Zooplankton: A Modelled
Example Using Continuous Plankton Recorder Data”).

Evidence of Past Change
There are few copepod time series of sufficient length in the
Southern Ocean from which we can document and understand
climate change effects over multiple decades. One of the

longest, the U.S. AMLR time series, focused on the tip of
the Antarctic Peninsula, shows ENSO influences on copepod
abundance, acting through the translation of frontal systems
and associated high and low phytoplankton concentrations
across their study area (Loeb et al., 2010; Zhang et al.,
2020).

However, longer timescales of observation are provided by
a series of comparisons of distributions between the Discovery
and the modern eras, with these comparisons needing to adjust
for sampling differences (Vuorinen et al., 1997; Ward et al.,
2008). Having standardized sampling methods, Ward et al. (2018)
found that the biomass-dominant species Calanoides acutus,
Rhincalanus gigas, and Calanus simillimus have increased in
abundance in the last 70 years by 20–55%. Further, Tarling
et al. (2018) found that the main copepods in the southwest
Atlantic sector of the Southern Ocean had broadly conserved
their spatial distributions despite a mean ∼0.74◦C surface
warming. In other words, they are nowadays inhabiting warmer
surface temperatures than they were 80 years ago. This is an
important result as it is the exception to the general expectations
of range shifts (generally polewards to cooler waters) under
warming scenarios (Beaugrand et al., 2009). Indeed, Antarctic
range shifts have been found in the Atlantic sector, both for
E. superba and salps (Pakhomov et al., 2002; Atkinson et al.,
2004, 2019), in keeping with those found for aquatic and
terrestrial ectotherms more generally (Parmesan and Yohe,
2003). Positive trends for 1997–2018 in modelled environmental
suitability for copepods by Pinkerton et al. (2020) were found
between the northern extent of seasonal sea ice and the
southern limit of the ACC, with linear trends predicted to
be highest in the Atlantic and Indian sectors and to exceed
6%/year in some places (see also Section “Past Changes in
Zooplankton: A Modelled Example Using Continuous Plankton
Recorder Data”).

Response to Drivers
Copepods comprise numerous species with differing vertical and
horizontal distributions and life histories (Atkinson, 1998). This
means that responses to drivers may differ over time and space.
Likewise, drivers can be direct, for example warmer temperatures
increasing physiological rates, or indirect, for example climate
affecting food sources (Moline et al., 2004; Montes-Hugo et al.,
2009) which in turn affect the copepods.

Three “universal” responses to rapid warming have been
described for ecototherms. Copepods may shift (1) in
geographical range (i.e., polewards range shifts Beaugrand
et al., 2009), (2) in phenology (i.e., earlier when warmer Mackas
et al., 2012), and (3) in body size (i.e., smaller species’, life
stages or adult sizes in warmer environments Daufresne et al.,
2009; Horne et al., 2016). The relative degree of expression of
these responses is poorly known for zooplankton generally; it
is certainly not known for Antarctic copepods. Due to the lack
of seasonal coverage over multiple years we have particularly
poor understanding of their phenological responses, for example
to the rapid changes in sea ice duration along the Western
West Antarctic Peninsula (WAP) (Stammerjohn et al., 2012;
Henley et al., 2019).
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While polar ectotherms are known generally for their
stenothermy, the physiology of Southern Ocean copepods is still
not well understood. Acclimation has a key role in governing
responses to stress, so short term experiments measuring acute
stress responses (for example to temperature or OA) are hard
to interpret in the context of long-term climate change. For
this reason, growth and egg production rate experiments on
freshly collected copepods are, arguably, the best indicator
of how the natural present-day variation in both food and
temperature dictate copepod performance. This allows at least
a glimpse of how they may fare in a changing world. Using
this method on the ubiquitous, albeit, colder water cyclopoid,
Oithona similis, the balance between fecundity and mortality
was found to be sensitive to low temperatures, suggesting that
increasing temperatures in the Scotia Sea may result in increased
abundances (Ward and Hirst, 2007). Likewise, Ward and Shreeve
(1998) demonstrated extension of large calanoid egg hatching
times with colder temperatures. Shreeve et al. (2002) found
changes in egg production rates, carbon mass and abundance
of copepod populations at South Georgia were all strongly
dependent on food concentrations, saturating only at high (>3µg
Chl a L−1) values. This suggests the importance of food limitation
in most Southern Ocean environments. This result is consistent
with habitat modelling of copepods in the Southern Ocean
(Pinkerton et al., 2020) which found that although copepod
abundances were related to sea surface temperature (SST) at the
large scale, changes to their abundance at a given location were
most strongly related to changes in phytoplankton biomass.

Effects from the gradual increase in OA are hard to
determine experimentally, but in an acute response microcosm
experiment, Tarling et al. (2016b) found that copepods show a
stronger preference for dinoflagellates when in elevated pCO2
conditions, demonstrating that changes in food quality and
altered grazing selectivity may be a major consequence of OA
(Tarling et al., 2016b).

Future Prognoses
An increase in small copepod species has been suggested as a
possible future scenario in a warmer Southern Ocean (Murphy
et al., 2016), and an Ecopath model experiment of krill or
copepod dominance showed that copepod dominance would
have major implications for the higher trophic levels that can
be supported (Hill et al., 2012). Likewise, commonly made
projections include general poleward range shifts of biota and
increases in open water blooms over high latitude shelves
formerly covered with ice (Constable et al., 2014b; McBride et al.,
2014).

While an increasing number of studies are making large scale
projections, this review has highlighted the paucity of basic
knowledge needed to predict how copepods will respond to
future changes in temperature, sea ice, food quantity and quality,
and OA. The data obtained so far suggest that we should be
very cautious in applying climatic envelope modelling of the
type applied successfully to Calanus in the northern hemisphere
(Helaouët and Beaugrand, 2007). In fact, north Atlantic Calanus
may be an exception rather than the rule, since copepods in
that region have showed widely divergent shifts over the last
60 years, with no evidence that their distributions tracked the

shifting isotherms (Chivers et al., 2017). In addition to a suite
of model-specific issues (Brun et al., 2016), the species may
show resilience in maintaining a fixed geographical distribution
(Tarling et al., 2018).

Some knowledge of how distributions have changed over past
decades is, in our view, essential to generate informed projections
for the future of copepods (and all zooplankton taxa examined
here). For copepods there is much scope for progress in this
area, given the wealth of data on this group that have been
collected in Antarctica since the Discovery Expeditions, from
a wide variety of nations working across the Southern Ocean.
Efforts to retrieve and compile Antarctic krill and salp data have
already shown their worth (Atkinson et al., 2017) and national
historical data sets on copepods have already been compiled
(O’Brien et al., 2017; Cornils et al., 2018). The SO-CPR will yield
increasingly valuable insights into both phenology and long-term
change (McLeod et al., 2010; Takahashi et al., 2011; Mackey et al.,
2012), and these various data sources need to be combined to
provide the spatio-temporal coverage needed to examine climate
change responses.

Resilience
The traditional view is that future warming rates will be too fast
to allow genetic-level adaptation to respond in time (reviewed
in Ji et al., 2010; Beaugrand and Kirby, 2018). However, this
view has been challenged (Dam, 2013; Peijnenburg and Goetze,
2013), and there is debate over the extent to which species can
adapt genetically in situ, adjust phenotypically (e.g., changes in
body size, behavior) or otherwise compensate by changes in
their phenology, or spatial distribution (Chivers et al., 2017).
The importance of adaptation has been suggested (Dam, 2013)
and in this context the observations of cryptic speciation in two
major copepod species Oithona similis in the Southern Ocean is
noteworthy (Cornils et al., 2017).

Efforts have been made to define the thermal niches of
Antarctic copepods (McGinty et al., 2018) and then to project
their distributions in a warmer environment based on the
assumption of a fixed thermal niche (Mackey et al., 2012).
However, Tarling et al. (2018) found that spatial distributions
of copepods within the southwest Atlantic sector did not
change, despite over 70 years of warming. This result therefore
questions the common assumptions underlying range shift
projections. Several candidate explanations for this resilience
to distribution shifts need to be investigated. For example,
one possibility is that the distributions of species are partially
“anchored” by suitable food concentrations. These are related
to fixed areas of elevated topography that promote iron
fertilization, leading to locally elevated phytoplankton and thus
copepod densities. Likewise, the marginal ice zone and sea
ice is known to promote feeding conditions in both winter
(Kohlbach et al., 2018) and by pre-conditioning effects after
ice retreat (Schmidt et al., 2018). Again, this could help to
weaken the direct link from temperature to copepod abundance.
Another mechanism may be adaptation at a genetic level,
or phenotypically, for instance with a reduction in body
size (see above).

To understand how climatic drivers affect copepods, we
need to study their effects in tandem, for example how food
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and temperature interact to driving copepod performance.
This is achievable through egg production or somatic growth
experiments on freshly collected copepods (Shreeve et al., 2002,
2005). Longer term incubations (involving realistic OA doses and
acclimated copepods) have now shown that, in general, copepods
appear to be fairly resilient to end of century projections of OA,
but the degree of resilience to more local, but potentially acute
effects such as increased glacial flour from glacial melt is poorly
known (Garcia et al., 2019). Notwithstanding these uncertainties,
the degree of resilience of copepods to climate change is central
to understanding how food webs work and the higher predator
species that may benefit, for example from a krill or a copepod-
dominated food web.

SALPS (ORDER SALPIDA)

Salps are gelatinous pelagic tunicates with individuals usually
ranging between 2 and 4 cm long but reaching 16 cm in length
in the Southern Ocean. Seven species are recorded south of the
Subtropical Convergence, although only two (Salpa thompsoni
and Ihlea racovitzai) are documented south of the APF (Foxton,
1961). Salps are major contributors to the total wet mass of three
major metazoans (salps, copepods, euphausiids) and rank third in
terms of dry or carbon mass after copepods and krill (Voronina,
1998). Salps are non-selective feeders, with a highly effective filter
capable of capturing a wide range of prey sizes, although they are
most suited to digesting small flagellates and, to some degree,
diatoms (von Harbou et al., 2011; Pakhomov et al., 2019). As
major grazers, salps are important mediators of vertical carbon
flux (Pakhomov et al., 2002; Pakhomov, 2004; Bernard et al.,
2012; Alcaraz et al., 2014). Despite their gelatinous nature, the
perception that salps are a “trophic cul-de-sac” is changing, with
increasing evidence of the importance of salps in the diets of
various groups of Antarctic animals (Pakhomov et al., 2002; Gili
et al., 2006; Jarman et al., 2013). Here we concentrate on Salpa
thompsoni and Ihlea racovitzai.

Current Distribution
Salpa thompsoni is by far the most numerous and widely
distributed Southern Ocean salp species, with the highest
densities observed in the warmer mid-latitude waters of the
Southern Ocean within the Antarctic Polar Frontal Zone (Foxton,
1966; Pakhomov et al., 2002). S. thompsoni is a flexible species
able to tolerate a range of habitats, with potentially significant
implications for the food web. While S. thompsoni can be sampled
over a broad thermal range (−1.5 to 9◦C), it primarily occurs in
warmer waters of 2 to 5◦C, possibly because cooler temperatures
may reduce their reproductive fitness through failed embryo
development (Henschke and Pakhomov, 2019). Ihlea racovitzai
is a smaller, cold-water, much less studied counterpart of
S. thompsoni only found in low numbers in the ice-covered
regions closer to the Antarctic continent (Foxton, 1966).

Evidence of Past Change
Observations from 1926 to 2003 suggest that salps have
undergone a general increase in densities and a circum-Antarctic

southward expansion in their distribution (Pakhomov et al.,
2002; Atkinson et al., 2004). Despite extreme patchiness in their
distribution and large inter-annual variability in abundance,
during recent decades, local salp populations have shifted
significantly southward, intruding into areas generally dominated
by Antarctic krill (Pakhomov et al., 2011; Steinberg et al.,
2015; Henschke and Pakhomov, 2019). This was demonstrated
by empirical observations in the Prydz Bay Region during
the 1990s (Pakhomov, 2000). Similar trends were observed
over four decades from the 1970s in the Scotia Sea and
around the Antarctic Peninsula (Loeb et al., 1997; Steinberg
et al., 2015). The historic increase in salps was also captured
in the ecosystem models of Hoover et al. (2012) around
Antarctic Peninsula.

Response to Drivers
Salps have a unique life cycle, with alternating sexual and asexual
reproduction (Foxton, 1966). The 1-year conceptual model of
the S. thompsoni life cycle described by Foxton (1966) has
recently been challenged. Empirical observations of growth rates
and modelling currently support a notion that S. thompsoni
asexual forms could live for as long as 2 years (Loeb and
Santora, 2012), although this species may complete its entire
life cycle, i.e., from egg to egg, passing through both the sexual
and asexual stages, in as little as 3 months (Pakhomov and
Hunt, 2017; Henschke et al., 2018; Groeneveld et al., 2020).
This allows salps under certain water temperatures and food
concentrations to sustain localized rapid population increases
(blooms), mostly through asexual reproduction (Pakhomov
et al., 2002). Currently, salp responses to temperature, food
composition and concentrations as well as other environmental
parameters are not well understood (Pakhomov et al., 2002;
von Harbou et al., 2011; Pakhomov and Hunt, 2017). The
most recent modelling studies indicate that salp development
is sensitive to food concentrations (Henschke et al., 2018;
Groeneveld et al., 2020) and salps have a preference for
picoplankton (Pakhomov et al., 2019). At the same time,
S. thompsoni distribution strongly correlates negatively with the
ice cover and positively with the warm water intrusions into
high Antarctic regions (Pakhomov, 2000; Pakhomov et al., 2002,
2011; Rogers et al., 2020). Furthermore, following a reanalysis of
multi-year data sets on salp biology, Henschke and Pakhomov
(2019) postulated that temperature strongly drives S. thompsoni
population dynamics.

Future Prognoses
Model-based projections (based on proposed changes in primary
production regimes) indicate the potential for replacement of
Antarctic krill by pelagic tunicates in the regions around the
Antarctic Peninsula (Suprenand and Ainsworth, 2017). Recent
observations (1970s to present) suggest a general increase in
salp densities and a southward expansion in their distribution
(Pakhomov et al., 2002; Atkinson et al., 2004). Antarctic krill
and S. thompsoni habitats seem to show little overlap on
thousands of km and meters to km scales, while both species
often co-occur at mesoscales (10s to 100s km) (Loeb et al.,
1997; Nicol et al., 2000b). The suggested interspecies interactions
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between krill and salps range from avoidance through to
competition to predation, but these are not well understood
(Le Fèvre et al., 1998; Pakhomov and Froneman, 2004). It seems
that S. thompsoni cannot establish persistent populations in
the high Antarctic and its occurrence at high latitudes is
likely sustained by advection of warm waters (Pakhomov et al.,
2011). This may change in a warmer Southern Ocean, although
the consequences of higher salp numbers for the ecology of
the Southern Ocean are hard to predict. An enhancement
in the interactions between krill and salps, for instance,
will have major effects on both the planktonic food web
and the contributions of krill and salps to the carbon sink
(Atkinson et al., 2012).

Salps are important mediators of the vertical carbon flux
(Pakhomov et al., 2002; Pakhomov and Froneman, 2004;
Alcaraz et al., 2014). Tunicates produce large, fast sinking
(>1000 m day−1) and carbon-rich (up to 40% dry weight) fecal
pellets, increasing the speed and efficiency of transfer of nutrients
and carbon from surface waters (Bruland and Silver, 1981;
Perissinotto and Pakhomov, 1998b). Even in areas where salps
do not dominate plankton biomass (e.g., the Scotia Sea), their
pellets contribute significantly to downward carbon flux (Manno
et al., 2015). Furthermore, they perform migrations between the
surface and 300–500 m during summer and reside at depths of
500–1000 m during winter, actively enhancing carbon flux into
deep water (Manno et al., 2015). Therefore, the downward flux
of carbon could significantly increase in the future due to an
increase in salp biomass and range expansion (Ducklow et al.,
2012; Rogers et al., 2020). However, the rate of fragmentation of
salp fecal pellets through coprophagy may be as high as 80% in the
upper water layer (Iversen et al., 2017), increasing uncertainty in
the above predictions.

The importance of salps in Southern Ocean food webs and
biogeochemical processes is now widely recognized and reflected
in recent modelling studies. For the Antarctic Peninsula, the
model of Hoover et al. (2012) recreated the historic decline in
krill and increase in salps, while that of Suprenand and Ainsworth
(2017) suggested a further decline in krill biomass, and an
increase in salp biomass by 2050. With the current and expected
future increase in salp biomass, their inclusion in biogeochemical
models is becoming increasingly recognized as important to
realistically parameterize the Southern Ocean carbon cycle
(Henschke et al., 2016). Their contribution to iron recycling
within the Southern Ocean has also been highlighted (Maldonado
et al., 2016; Cabanes et al., 2017). A key limitation to further
advancement of biogeochemical models is the paucity of data on
physiological requirements and limitations, feeding preferences,
and of biomass observations for model parameterization and
validation (Le Quéré et al., 2016).

The response of salps to future climate change will
have a variety of implications for predators, fisheries and
biogeochemical cycling. To understand the impacts of change
in these ecosystems there is a need to improve assessments of
the distribution and abundance of salps in the Southern Ocean,
salp interactions with other major metazoan grazers (particularly
krill), and the factors (both abiotic and biotic) that drive their
population dynamics

Resilience
Salp genetic studies are in their infancy but it appears that
salps possess fast-evolving genes, potentially pointing to a faster
turnover rate of the population and an enhanced selection
for new life cycle traits (Jue et al., 2016; Batta-Lona et al.,
2017; Goodall-Copestake, 2017, 2018). It may be hypothesized
that salps have a higher capacity to adapt to abrupt shifts
in the environment (Bucklin et al., 2018; Bitter et al., 2019).
A combination of fast population turnover rates (Henschke
et al., 2018; Groeneveld et al., 2020) and an ability to
repeatedly produce chains of hundreds of genetically identical
individuals during asexual reproduction would enhance chances
of finding an environmental match, thus maintaining salp
genetic diversity and resilience in the changing environment
(Bucklin et al., 2018).

PTEROPODS (ORDER PTEROPODA)

Pteropods are pelagic gastropod molluscs with a global
distribution, represented by six species in the Southern Ocean.
They can be divided into two orders: the shelled thecosomes
(Thecosomata), comprising Limacina helicina antarctica,
L. retroversa australis, Clio pyramidata, and C. piatkowskii,
and the shell-less gymnosomes (Gymnosomata), comprising
Spongiobranchaea australis and Clione limacina antarctica.
Limacina spp. are mesozooplankton typically in the 1–5 mm size
range, while Clio spp. and gymnosomes are macrozooplankton
typically in the 10–20 mm size range. Time series show a
mean pteropod contribution to zooplankton abundance of ∼
11% in the vicinity of the Prince Edward Islands and South
Georgia, 14% in the WAP, and <5% in the East Antarctic;
however, their contribution can periodically exceed 85% (Hunt
et al., 2008; Steinberg et al., 2015). Thecosomes can be highly
abundant and are important trophically as grazers and prey.
A detailed review on the ecological role of pteropods in the
Southern Ocean can be found in Hunt et al. (2008). From a
biogeochemical point of view, pteropods play an important
role in the direct export of carbon and sequestration to the
deep ocean through the sinking of dead individuals and fecal
pellets (Manno et al., 2010, 2018). Their calcification also
contributes to the carbonate counter pump which releases
CO2 back into surface waters (Manno et al., 2018). Thecosome
pteropods produce shells from aragonite, a metastable and
relatively soluble form of biogenic calcium carbonate (CaCO3)
(Mucci, 1983) and are regarded as sensitive indicators of OA
(Fabry et al., 2008; Bednaršek et al., 2017a; Manno et al., 2017).
This is particularly relevant in the polar regions where ocean
uptake of anthropogenic CO2 and the undersaturation of
carbonate ions resulting from OA is progressing most rapidly
(Orr et al., 2005).

Current Distribution
Pteropods occur throughout Antarctic and sub-Antarctic waters
but species composition differs north and south of the APF
reflecting distinct temperature tolerances (van der Spoel et al.,
1999; Hunt et al., 2008; McLeod et al., 2010). Globally,
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the highest average pteropod biomass is estimated to occur
within the 70–80◦S latitudinal band of the Southern Ocean
(39.71 ± 93 mg C m−3 Bednaršek et al., 2012a). Hot spots
of pteropod occurrence in the Southern Ocean include in the
vicinity of islands and the Ross Sea. Densities exceeding 1000
ind.m−3 have been recorded from around South Georgia, the
APF, and in the Ross Sea (Pane et al., 2004; Hunt et al., 2008). All
Southern Ocean pteropod species are predominantly epipelagic
(Hunt et al., 2008; Akiha et al., 2017) with the exception of
C. piatkowskii, which is mesopelagic (van der Spoel et al., 1999).
Both diel and seasonal migration occurs, with most species
occurring deeper in the water column (to 1000 m) during winter
(Hunt et al., 2008; Flores et al., 2014).

Evidence of Past Change
The longest published pteropod time series is from the Palmer
Long Term Ecological Research (PLTER) area off the WAP
(Steinberg et al., 2015). Summer surveys have been conducted
continuously since 1993, in the form of a north-south grid
that spans the coast, shelf and continental slope. Over the
time series, pteropod abundance has shown large interannual
variability and while gymnosome abundance increased up to
2017, thecosomes have shown no long-term trend throughout
the WAP (Thibodeau et al., 2019). Sub-regionally, L. h.
antarctica abundance has increased in the slope region, while
C. pyramidata abundance has increased in the south. The
overall pattern is dominated by an alternation between high
and low abundance that is negatively correlated with the
Multivariate ENSO Index, and positively correlated with SST,
sea ice, and primary production (Steinberg et al., 2015).
Gymnosome abundance tracks thecosome abundance, reflecting
their trophic dependency. Similar trends in pteropod abundance
were observed by the U.S. AMLR Program time series in the
northern Antarctic Peninsula region (Loeb and Santora, 2013).
The other significant pteropod time series comes from the SO-
CPR surveys (1997 to present), which has mainly focused on the
Pacific sectors thus far (McLeod et al., 2010). Although a detailed
analysis of the time series has yet to be conducted, the combined
data have been used to model the abundance of major groups with
respect to chlorophyll-a concentration, net primary productivity,
SST, mixed layer depth, sea ice and the spatial gradient of
SST (Pinkerton et al., 2020). Based on the relationship between
pteropod abundance and these environmental parameters, that
study suggested a significant increase in environmental suitability
for pteropods in many areas south of the APF in the last 20 years,
but a significant decrease over the Ross Sea Shelf (see also
Section “Past Changes in Zooplankton: A Modelled Example
Using Continuous Plankton Recorder Data”). A caveat with these
model results is that they do not include a representation of OA
or oxygenation state.

Response to Drivers
Pteropod abundance is strongly positively correlated with
primary production (chlorphyll-a biomass) (Seibel and Dierssen,
2003; Hunt et al., 2008; Steinberg et al., 2015; Pinkerton
et al., 2020), and environmental forcing of primary production
is therefore expected to be an important driver of pteropod

change. Global time series indicate that, to date, temperature
and productivity have been the dominant drivers of change
in pteropod species composition and abundance (Mackas and
Galbraith, 2012; Beaugrand et al., 2013). The vulnerability of
thecosome pteropods to OA, specifically aragonite saturation
state (�ar, for which 1 is generally considered the vulnerability
threshold), makes this another potentially important driver of
change (Comeau et al., 2010; Bednaršek et al., 2012a; Lischka
and Riebesell, 2012; Bednaršek et al., 2014; Thabet et al., 2015;
Manno et al., 2017; Mekkes et al., 2021). The magnitude of their
sub-lethal and lethal responses to OA depends on life-stage, with
larvae and juveniles being substantially more affected by �ar
than adults (Bednaršek et al., 2019). Maternal and embryonic
OA stress was demonstrated to reduce the percentage of L. h.
antarctica eggs successfully reaching the organogenesis stage by
80% (Manno et al., 2016). Numerous studies have demonstrated
synergistic effects, leading to outcomes that are nonlinear
and sometimes severe (Bednaršek et al., 2016). Experiments
combining OA with warming, deoxygenation, freshening or
increased stratification have demonstrated synergistic effects
among drivers of change leading to increased mortality (Lischka
et al., 2011), reduced calcification (Comeau et al., 2010), shell
degradation and malformation (Lischka and Riebesell, 2012;
Gardner et al., 2018), altered metabolic rates (Maas et al., 2011,
2016) and changes to swimming performance and behavior
(Manno et al., 2012; Bednaršek and Ohman, 2015). Further,
in situ observations along the California Current System, have
demonstrated the negative impact of OA in combination with
warming and deoxygenation on pteropod population (Bednaršek
et al., 2018). The majority of these studies were not carried
out on Southern Ocean species, and it has been shown that
responses in the same, or closely related, species can vary between
environments (Maas et al., 2016). Nevertheless, some Antarctic
studies have been performed. Gardner et al. (2018) found that
early life stages of L. h. antarctica in the Scotia Sea exhibited shell
malformation and dissolution when exposed to warming and OA,
with mortality reaching up to 39%. Meanwhile, Hoshijima et al.
(2017) found that metabolic rates increased at low pH and that
this increase was amplified at higher temperatures in the same
species in the Ross Sea.

Future Prognoses
Southern Ocean warming is expected to result in a change
in pteropod species distribution, specifically a southward shift
in sub-Antarctic taxa (Gardner et al., 2018). Evidence also
suggests that ongoing warming, sea ice loss, and increased
productivity will favor increased pteropod abundance (Seibel
and Dierssen, 2003; Steinberg et al., 2015). Projections for
future Southern Ocean productivity are spatially variable, with
productivity forecast to decrease in the sub-Antarctic and
increase toward the Antarctic continental shelf (Deppeler and
Davidson, 2017; Pinkerton et al., 2021). While productivity may
favor pteropods in southern regions, they may be increasingly
negatively impacted by OA (Manno et al., 2007; Bednaršek
et al., 2012a). Southern Ocean surface waters are expected to
start becoming undersaturated with respect to aragonite as
early as 2030 (McNeil and Matear, 2008), affecting ∼ 30%
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of surface waters by 2060 and >70% by 2100 (Hauri et al.,
2016). Aragonite undersaturation will affect southern waters
first, progressively moving northwards. Furthermore, both shell
dissolution and survival in aragonite undersaturated conditions
may be exacerbated by concurrent warming (Bednaršek et al.,
2019). The development of predictive models of pteropods
responses to environmental change requires further research
into the effect of stressors, particularly the synergistic effects of
multiple drivers. Future research will benefit from the application
of new molecular tools, e.g., transcriptomics, in measuring the
physiological response of pteropods to stressors (Johnson and
Hofmann, 2016; Johnson et al., 2019).

Resilience
While a number of studies have documented the effect of OA
on pteropod physiology and shell condition, the importance of
carbonate chemistry as a control on pteropod populations in
the Southern Ocean has yet to be demonstrated. No relationship
was found between �ar and pteropod abundance in the WAP
time series (Thibodeau et al., 2019). The fact that �ar has yet
to become undersaturated across most Southern Ocean surface
waters may explain the lack of any population relationship with
carbonate chemistry. However, it should be noted that Southern
Ocean pteropods do already experience �ar undersaturated
conditions on a seasonal basis through winter occupancy of �ar
depleted waters (Hunt et al., 2008; Jiang et al., 2015; Manno et al.,
2016). Arctic L. helicina experience greater exposure to aragonite
undersaturated conditions, with �ar <1 occurring in surface
waters of the Beaufort Sea (Yamamoto-Kawai et al., 2009) and
Amundson Gulf (Niemi et al., 2021). In situ studies of the Arctic
L. helicina showed that the periostracum of this species was an
effective barrier to exposure to �ar undersaturated waters (over
4 days of incubation), and that dissolution to the inner shell only
occurred when this was breached by previous physical damage
(Peck et al., 2016a,b). However, other studies (Bednaršek et al.,
2016, 2021; León et al., 2019; Niemi et al., 2021) do not agree that
dissolution only occurred at the time of the periostracum breach.
Furthermore, Peck et al. (2018) revealed that, despite losing the
entire thickness of the original shell in localized areas, L. helicina
can maintain shell integrity through thickening the inner shell
wall. Nevertheless, this resilience is likely to come at a metabolic
cost, which such organisms are unlikely to maintain over the
longer term. In fact Niemi et al. (2021) found limited evidence for
shell repair in the Amundson Gulf even when food was abundant,
while Bednaršek et al. (2021) found reduced shell thickness as
evidence of exposure.

PAST CHANGES IN ZOOPLANKTON: A
MODELLED EXAMPLE USING
CONTINUOUS PLANKTON RECORDER
DATA

The SO-CPR survey was established in 1991 to map the spatial
and temporal patterns of zooplankton through the Southern
Ocean (Hosie et al., 2003). The CPR is towed behind a ship
and collects samples of zooplankton from ∼10 m depth, which

are preserved in formalin and subsequently morphologically
identified in the laboratory. SO-CPR surveys continue to be
carried out (Takahashi et al., 2021). At various stages this dataset
has been analyzed to help understand spatial distributions and
variation/change in zooplankton over time (e.g., Hunt and Hosie,
2005, 2006; McLeod et al., 2010; Pinkerton et al., 2010, 2020;
Takahashi et al., 2011, 2021; Meilland et al., 2016). Pinkerton
et al. (2020) combined SO-CPR data and oceanographic
conditions (namely: chlorophyll-a concentration, net primary
productivity, SST, mixed layer depth, sea ice concentration, and
the spatial gradient of SST as an indicator of ocean fronts) to
understand long-term trends in the environmental suitability
for broad groups of zooplankton in the Southern Ocean. Using
the relationship between zooplankton and environmental data
collected by the CPR tows, the authors used statistical models
to extrapolate information on the environmental suitability of
zooplankton to unsampled areas. “Environmental suitability” was
defined as the expected abundance of a species or group of
zooplankton at a given location and time based on environmental
properties and used as a measure of ecological niche.

Six key taxonomic groups of zooplankton were considered by
Pinkerton et al. (2020)1: Copepoda (Calanoida), Euphausiidae
(numerically dominated in SO-CPR data by Thysanoessa
macrura, 64%; E. superba comprised only 9%), Oithona similis,
and pteropods, Foraminifera and Fritillaria spp. Salps were
rarely identified in the CPR samples. Analysis using Boosted
Regression Tree (BRT) models provided insights into the patterns
of and changes in environmental suitabilities for these broad
zooplankton groups over the period 1997–2018. Analysis was also
carried out for all these groups combined (total abundance). See
Pinkerton et al. (2020) for a spatial plot of CPR samples, which
are predominantly from East Antarctica and the Ross Sea region.

The modelling of Pinkerton et al. (2020) suggested higher
environmental suitability for all zooplankton between the SAF
and the Southern limit of the ACC and lower suitability
to the north and south. Lower abundances of euphausiids
were predicted south of the APF and higher abundances
of copepods were predicted between the APF and the SAF.
Modelled environmental suitability for pteropods was highest
over the Ross Sea shelf.

For the key groups presented in this study (i.e., Euphausiidae,
Copepoda (Calanoida and Oithona similis), and pteropods) we
replotted the absolute-values of mean and long-term linear
trends in environmental suitability from Pinkerton et al. (2020)
(Supplementary Figures 1,2). Based on data from Pinkerton
et al. (2020), time series of change in environmental suitability
for total abundance over the past two decades were calculated
for MEASO Sectors, Zones and Areas [Figures 6 and 7
(Sectors, Zones) and Supplementary Figure 3 (Areas)]. Based
on Pinkerton et al. (2020), the highest increase in modelled
environmental suitability for zooplankton (combined) across all
Zones and Sectors was in the MEASO sea ice zone (+2.1%
per year on average). Our analysis also showed that changes
environmental suitability for zooplankton total abundance were

1See Pinkerton et al. (2020) for assumptions, limitations, and caveats of the
analyses.
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FIGURE 6 | Time series of change in environmental suitability for total zooplankton abundance, i.e., Euphausiidae, Copepoda (Calanoida and Oithona similis), and
pteropods, from the combined Boosted Regression Tree model of Pinkerton et al. (2020) for the Southern Ocean Marine Ecosystem Assessment for the Southern
Ocean (MEASO) (A) study area, (B) Sectors. Time Series change for each individual MEASO Zones and Area are given in Figure 7 and Supplementary Figure 3,
respectively. The environmental suitability anomaly (difference from the monthly climatological value) is shown for each month over period 1998–2018. Gray shading
indicates calendar years. Black points and lines are monthly anomalies (differences from long-term monthly means). Red lines are smoothed changes (4-year running
median).
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FIGURE 7 | Time series of change in environmental suitability for total zooplankton abundance, i.e., Euphausiidae, Copepoda (Calanoida and Oithona similis), and
pteropods, from the combined Boosted Regression Tree model of Pinkerton et al. (2020) for Southern Ocean MEASO Zones. Time Series change for each individual
MEASO Area are given in Supplementary Figure 3. The environmental suitability anomaly (difference from the monthly climatological value) is shown for each
month over period 1998–2018. Gray shading indicates calendar years. Black points and lines are monthly anomalies (differences from long-term monthly means).
Red lines are smoothed changes (4-year running median).

higher in the Atlantic Sector (1.1% per year) and Central Indian
Sector (0.8% per year) than in the other MEASO Sectors, and
statistically significant (p <0.05). For comparison, at the scale
of the Southern Ocean, Pinkerton et al. (2020) reported that
the average annual trend in environmental suitability for total
zooplankton abundance over the same period was just 0.6%.
Pinkerton et al. (2020) showed that changes in environmental
suitability for zooplankton total abundance were predominantly
driven by improving conditions for copepods (cyclopoid and
calanoid trends of 0.6% per year on average), foraminifera (0.85%
per year) and Fritillaria (0.8% per year); for euphausiids, the
average annual trend was only 0.2%, and for pteropods there was
no significant trend in modelled environmental suitability at the
scale of the Southern Ocean.

Although environmental suitability modelling such as
Pinkerton et al. (2020) can provide information on changes to
amenable conditions for zooplankton, the analysis should be
considered hypothetical in that it is not certain that zooplankton
abundances actually change in response to these oceanographic
drivers. In other words, ecological niches may expand, but
populations size may not respond proportionately. Some
evidence for this resilience of distribution was provided in the
Atlantic sector, where Tarling et al. (2018) found that distribution
centers of copepods had not shifted south over the last century
to keep track with the warming thermal regime. Another caveat
is that environmental conditions used to define the zooplankton
habitat niche are necessarily limited to those for which
information are available, and these are predominantly physical

in nature. Unobserved ecological feedbacks can thus be missed.
This, and small-scale issues, are reasons why only approximately
half (at best) of observed variability in zooplankton abundances
can be described by environmental-statistical models. Better
understanding of the life histories and environmental and
ecological dependencies of Southern Ocean zooplankton are as
crucial as ever.

Additionally, broad groupings of zooplankton were used in
Pinkerton et al. (2020) to avoid issues arising from difficulties in
identifying some developmental stages of some species in CPR
data. In particular, euphausiids are fragile with respect to the
CPR collection process making their identification challenging.
Genetic and image-analysis methods are under development
for CPR data to address these identification issues (Pinkerton,
unpublished data).

SUMMARIES AND ASSESSMENTS

A summary of the current role of these zooplankton taxa
in the Southern Ocean, based on the information detailed in
Sections Euphausiids (Family Euphausiidae), Copepods (Subclass
Copepoda), Salps (Order Salpida), and Pteropods (Order
Pteropoda) is presented in Supplementary Table 1. A summary
of environmental tolerances of these taxa (based on recent
empirical studies) are also presented in Supplementary Table 2.

An assessment of the influence of anticipated changes
in key physical, chemical, and ecological drivers on the
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TABLE 1 | Assessment* of the potential impacts of key physical and chemical drivers of change on the distribution and abundance of key Southern Ocean zooplankton
taxa (based on information provided in Sections “Euphausiids (Family Euphausiidae), Copepods (Subclass Copepoda), Salps (Order Salpida), Pteropods (Order
Pteropoda), and Past Changes in Zooplankton: A Modelled Example Using Continuous Plankton Recorder Data”, including references cited therein). See
Supplementary Table 3 for a more detailed assessment of the potential future changes in these taxa (in response to some of these drivers) and their potential capacity
for resilience.

Taxa Wind Sea ice Sea surface
temperature

Ocean
circulation

Ocean
stratification

Mixed layer
depth

Ocean
acidification

Extreme
climate-
related
events

Climate
indices

Antarctic krill U H H M U L L U H

Other euphausiids U H H M U M L U H

Copepods U U U U U U U U U

Salps M M H H M M L H H

Pteropods U M H U M M H U H

Drivers may be direct or indirect and may not have an influence across all areas of the Southern Ocean, seasons, or life history stages. U = unknown/influence varies
greatly according to species, L (blue) = low influence, M (orange) = medium influence, H (red) = high influence.
*This assessment represents the authors’ expert consensus as explained in Section “Summaries and Assessments”.
See Supplementary Table 1 for a summary of the current role of these taxa in Southern Ocean ecosystems and Supplementary Table 2 for environmental tolerances.
NB: This is not a complete list of drivers. Extreme (high impact) climate-related events = e.g., upwelling events, very high air or sea temperatures events, or rapid loss of
sea ice and/or intense storms that can collapse ice shelves or destroy habitat. Climate indices = e.g., ENSO, SAM.

distribution and abundance of these taxa is summarized
in Tables 1, 2. This assessment represents the authors’
(unweighted) expert consensus based on current understanding
and information detailed in Sections Euphausiids (Family
Euphausiidae), Copepods (Subclass Copepoda), Salps (Order
Salpida), Pteropods (Order Pteropoda) and Past Changes in
Zooplankton: A modelled example using Continuous Plankton
Recorder Data (including references cited therein). A qualitative
assessment of the potential future changes in zooplankton
in response to these drivers and their potential capacity
for resilience is presented in Supplementary Table 3 as
a series of statements. This also represents the authors’
(unweighted) expert consensus based on current understanding
and information detailed in the Sections listed above (including
references cited therein).

CONCLUDING COMMENTS

Understanding the processes by which key global and local
drivers of change impact the habitat features, biodiversity,
structure, functioning and variability of marine ecosystems
across a range of spatial, temporal, and organizational scales is
crucial to developing conservation and sustainable management
strategies that can anticipate and respond to global change
impacts. Zooplankton form an integral part of Southern
Ocean marine ecosystems which are extensively connected
to the global ocean (Murphy et al., 2021). Their inclusion
in regional and circumpolar assessments is therefore vital
to understanding present and future change in this globally
important ocean and the ramifications for Earth System

functioning (Murphy et al., 2008; Hofmann, 2016). Although
a number of studies have recently assessed the potential future
responses of these marine ecosystems to a changing Southern
Ocean, few have provided detailed syntheses on the expected
changes in zooplankton (Mackey et al., 2012; Hunt et al., 2016;
Chown and Brooks, 2019; Siegert et al., 2019; Rogers et al.,
2020).

This overview provides a synthesis of the current
understanding of four key metazoan zooplankton taxa,
euphausiids, copepods, salps and pteropods, which are important
members of zooplankton communities and food webs across the
Southern Ocean. It illustrates the range of life history strategies,
habitat, and environmental associations and observed and
modelled changes in their distribution and abundance across
the circumpolar ocean. It has also highlighted their varied
responses to physical, chemical, and ecological drivers and some
of the mechanisms involved. Moreover, it has emphasized that
despite the extensive research on Southern Ocean zooplankton
(dating back to the 1872-6 HMS Challenger expedition Hosie
et al., 2000), and growing awareness of the role of these taxa in
modulating ecosystem structure and function, there are major
gaps in our current understanding of their physiology, life history
strategies and processes, population dynamics, distribution and
abundance, food web and competitive interactions across a
range of spatial and temporal scales. There are also gaps in
our understanding of their roles in biogeochemical cycling and
roles underpinning fisheries and wildlife tourism. Many of the
limitations and uncertainties in this understanding (across a
range of spatial, temporal, and organizational scales) can be
attributed to the status of field, process and modelling studies of
these taxa, including insights into their capacity for biological
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TABLE 2 | Assessment* of the potential impacts of key ecological drivers of change on the distribution and abundance of key Southern Ocean zooplankton taxa (based
in information in Sections “Euphausiids (Family Euphausiidae), Copepods (Subclass Copepoda), Salps (Order Salpida), Pteropods (Order Pteropoda), and Past Changes
in Zooplankton: A Modelled Example Using Continuous Plankton Recorder Data”, including references cited therein). See Supplementary Table 3 for a more detailed
assessment of the potential future changes in these taxa (in response to some of these drivers) and their potential capacity for resilience.

Taxa Prey populations Predator populations Fisheries

Microbiota (sea
ice and sea floor)

Primary
production

Predator
populations

Recovery of historically
harvested species (e.g.,

whales, seals)

Antarctic krill M H H H L

Other euphausiids H H H H L

Copepods U H M U L

Salps U H U U U

Pteropods U H U U U

Drivers may be direct or indirect and may not have an influence across all areas of the Southern Ocean, seasons, or life history stages. U = unknown/influence varies
greatly according to species, L (blue) = low influence, M (orange) = medium influence, H (red) = high influence.
*This assessment represents the auhors’ expert consensus as explained in Section “Summaries and Assessments”.
See Supplementary Table 1 for a summary of the current role of these taxa in Southern Ocean ecosystems and Supplementary Table 2 for environmental tolerances.

resilience. These reflect the difficulties in studying these taxa
under laboratory conditions and sampling and observing them
in situ across a range of spatio-temporal scales, particularly
over large parts of the open ocean, within the sea ice zone, at
depth, and during seasonal transitions and the winter months.
There is also a paucity of multidecadal biological time series
of sufficient duration to quantify the variability and rates of
changes of relevant oceanic variables and zooplankton species
or be definitive about the causal mechanisms (O’Brien et al.,
2017; Cornils et al., 2018). Furthermore, the Southern Ocean
is characterized by high natural spatial and temporal variability
and has experienced ecosystem-level changes through the
historical exploitation of marine living resources (Clarke et al.,
2012). Observed changes in zooplankton are therefore currently
difficult to attribute to specific climate or ecological processes.

Future Prognoses
Many current scenarios of future changes in key physical,
chemical, and ecological drivers that are relevant to zooplankton
distribution and abundance are highly uncertain. This can be
attributed in part to the current suite of projections of physical
and chemical drivers (based on current global climate models –
i.e., CMIP5, available at the time of writing) that are poorly
constrained and highly uncertain. These models are either not
at the appropriate spatial or temporal scales or do not resolve
key processes (e.g., primary production, sea ice and oceanic
processes- except for the position of the APF, see Morley et al.,
2020) to enable the interpretation of biological change in the
Southern Ocean (Murphy et al., 2018). In addition, scenarios
of other key local drivers (e.g., fisheries, predator impacts,
whale recovery, tourism, pollution, and invasive species) also
remain uncertain (see also Grant et al., 2021). The limitations

and uncertainties surrounding the fundamental understanding
of these taxa (as discussed above) together with the status of
these scenarios, means that there is insufficient data to provide
comprehensive prognoses for future changes in zooplankton with
definitive levels of confidence (sensu Intergovernmental Panel
on Climate Change, IPCC, e.g., Mastrandrea et al., 2010) either
within each of the MEASO areas or at specific time and space
scales relevant to the needs of conservation and management (see
Box 1). Future prognoses with attached levels of confidence have,
however, been made for Southern Ocean zooplankton within the
IPCC’s Working Group 2 reports (e.g., IPCC, 2014) and Special
Report on the Ocean and Cryosphere in a Changing Climate
(IPCC, 2019). McBride et al. (2021) have considered the impacts
of climate-driven environmental change on Antarctic krill in
the context of CCAMLR fisheries management. The potential
impacts of change on Antarctic krill within CCAMLR statistical
Area 48 have also been considered by Murphy et al. (2018) and
serve as a model for other species and regions (see also future
work below). The future prognoses presented here represent the
authors’ consensus view based on expert knowledge and the best
available published evidence. Indications are that the response
of these zooplankton to future change will be complex and vary
across both life history stages and scales of space, time, and
ecological organization, against a backdrop of natural variability.
Their response to multiple drivers (including their variability
over space and time and their additive, synergistic, or antagonistic
effects) and their potential for biological resilience (Murphy et al.,
2016; Gruber et al., 2021) will further add to this complexity but
remain largely unexplored.

Population Level Changes
Based on our current understanding of the key zooplankton taxa,
observed changes and the mechanisms involved, anticipated
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BOX 1 | Research gaps and priorities: Current limitations to
projections of future zooplankton change.
To develop robust future projections of changes in the distribution and
abundance of zooplankton communities within the MEASO assessment areas
requires a number of elements. These include (1) scenarios of key physical,
chemical and ecological drivers within a given assessment area (based on
Representative Concentration Pathway emissions scenarios where relevant),
(2) mechanistic understanding of the impacts of key drivers on zooplankton
within a given assessment area, and (3) development of zooplankton (and
ecosystem) models that can be coupled with scenarios of key drivers to
project qualitative or quantitative changes in zooplankton populations or
communities within a given area. Development of these elements, together
with clarification of the uncertainties and caveats involved, will facilitate
conservation and management options for Southern Ocean ecosystems. Key
limitations currently include:

Fundamental understanding of zooplankton ecology over a range of
spatio-temporal and organizational scales (from local to circumpolar, seasonal
to multi-decadal, and species to ecosystems) and the mechanistic processes
involved. These limitations reflect the difficulties in studying zooplankton in the
laboratory and the field, and the lack of time series data essential for detecting
long-term trends in key areas, e.g.,:
• Physiological (energy and nutrient demands, tolerance to environmental
stressors, such as temperature, starvation, oxygen, and pH− see also drivers
below), morphological and behavioral traits.
• Growth, development and reproduction, feeding and dietary preferences,
food quality.
• Life histories, traits, and strategies (including behaviors during life history
events such as foraging and reproductive strategies, migrations, seasonal
development and overwintering, competitive/anti-predator behaviors) and
phenology.
• Phenotypic plasticity.
• Role in food webs (trophic ecology including modes of feeding, strength and
direction of predator-prey interactions, ingestion and egestion rates, energy
transfer, top-down and bottom-up controls, competition), particularly during
winter when phytoplankton production in water column and sea ice is limited.
• Role in biogeochemical cycling (i.e., particle export and sequestration of
organic material and the chemical cycling of nutrients).
• Distribution (horizontal and vertical), abundance/biomass and production
estimates, spatial population connectivity, demography and community
composition.
• Hotspot locations for key ecological processes (e.g., spawning, larval
development and recruitment, overwintering, migrations, feeding, population
concentrations, connectivity and advection routes, biogeochemical cycling).
• Natural variability in zooplankton dynamics (across seasonal to
multi-decadal timescales).
• Changes in zooplankton dynamics that represent deviations from assumed
natural variability.
• Key natural environmental and anthropogenic drivers of zooplankton
dynamics, variability and change. Mechanistic understanding of their impacts,
including additive/synergistic/antagonistic effects of multiple drivers, e.g.,:

- Sea ice dynamics, ocean warming, stratification, circulation, acidification,
and climate oscillations.

- Prey (e.g., phytoplankton biomass, species assemblages) and predator
dynamics (e.g., predator biomass, species assemblages, recovery of
cetaceans).

- Current fisheries (including their impacts on different life cycle stages).

- Other possible drivers (e.g., pollution, tourism, invasive species).

• Resilience of zooplankton to multiple drivers of change (including additive,
synergistic, or antagonistic effects).

Ecosystem models that can enhance understanding of zooplankton
dynamics, variability and change, ecosystem structure and function, and
inform regional and global assessments, conservation, and management

(Continued)

BOX 1 | (Continued)
decisions. There is a paucity of models underpinned by (a) to conceptualize
and quantify ecological processes relevant to zooplankton over a range of
spatio-temporal and organizational scales, e.g.,:
• Individual species models (e.g., life history models representing life history
traits and rates, life history strategies, physiological, morphological, and
behavioral traits, biogeochemical cycling and simulating the effects of drivers
on key life history stages and processes, i.e., life history models embedded in
full 3D ocean physics models that include sea ice).
• Food web models (e.g., representing regional and temporal variations in
zooplankton community composition, trophic links and alternative energy
pathways to higher trophic levels).
• Biogeochemical models (e.g., representing the role of different zooplankton
species).
• End-to-end ecosystem models that integrate physical, biogeochemical and
biological processes across multiple species, trophic levels, and
spatio-temporal scales.

Comprehensive standardized future scenarios of key physical, chemical,
biological, and ecological drivers including:
• Scenarios for sea ice, ocean warming, stratification, circulation and
acidification and phytoplankton change. The current suite of global climate
model projections available [i.e., CMIP(5) at the time of writing] to develop
scenarios of zooplankton drivers under different emission pathways are poorly
constrained and highly uncertain. They are too low in spatial resolution
(>100 km) to resolve many key processes relevant to these taxa (e.g., related
to sea ice, ice shelves, upwelling, cross-shelf exchange, connectivity, and
retention), which often occur over smaller spatial scales. Differentiating
between patterns of natural internal variability versus global anthropogenic
change in these drivers is also complex. Local modes of atmospheric
variability (e.g., Southern Annular Mode, Amundsen Sea Low, El Niño events)
and potential extreme climate-related events may further influence ocean,
biogeochemical and sea ice processes.
• Scenarios for predator and prey dynamics, recovery of cetacean
populations, and fisheries. Aside from those relevant to Antarctic krill within
the Scotia Sea ecosystem, there are few available scenarios of changes in
these ecological drivers.

Coupled physical, chemical, and biological models that can be forced by
future scenarios of key drivers to generate qualitative and quantitative
projections of future changes in zooplankton species, communities, and
ecosystems across a range of spatio-temporal scales.

changes in sea ice, ocean warming, ocean circulation, mixed layer
depth, primary production, and predators were considered here
as important direct and indirect drivers of future change in these
biotas. Whilst (the anticipated direction of) many of these drivers
are expected to have an overall negative effect (e.g., decreased
egg production rates, growth, food availability/suitability,
feeding efficiency, availability of suitable habitat for spawning,
reproduction and overwintering, population size and abundance,
range contraction, and competition) on some species (e.g.,
E. superba, E. crystallorophias), other species may experience
an overall positive effect. For example, increased growth rates,
feeding efficiency, habitat availability, population size and
abundance, and range expansion of T. macrura, salps, and
pteropods. A potential positive feedback loop, generated by the
recovery of whale populations in the short term (see McBride
et al., 2021), on phytoplankton productivity may also result
in increased abundance of E. superba, E. crystallorophias, and
T. macrura (Schmidt et al., 2011; Ratnarajah et al., 2014). For
some species and localities, however, the positive effects of some
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drivers may be offset by the negative effects of other drivers –
for example, enhanced feeding efficiency of E. crystallorophias in
response to increased diatoms in phytoplankton communities
may not be sufficient to counteract the impacts of sea ice loss on
spawning habitat and reproductive success. Ocean acidification
is expected to have negative consequences for the thecosome
pteropods, starting in the higher latitudes first. It must be stressed
however, that these drivers may not have an influence across
all life stages of the taxa considered, or across all areas of their
distribution. Competitive interactions brought about by driver
impacts will also be important, but the nature of many of these
are unknown. We also only considered the potential impacts
of each driver in isolation and recognize that the additive,
synergistic, or antagonistic impacts of multiple drivers on these
taxa will be important and warrants further attention. Although
we did not assess the impacts of some other global drivers,
such as ocean deoxygenation, increased ultraviolet radiation, or
recovery of the ozone hole over Antarctica and the Southern
Ocean, or local drivers, such as pollution (e.g., microplastics),
invasive species, parasites, or pathogens (see Grant et al., 2021),
existing and emerging research suggests that these may also elicit
future changes in zooplankton (Flores et al., 2012a; Rowlands
et al., 2021). All of these will have important implications for
the dynamics of zooplankton population dynamics and their
spatial connectivity.

Community Level Changes
Although not considered explicitly in this assessment, predicting
changes in zooplankton community dynamics will be key to
predicting the resultant effects on regional food webs and
ecosystem structure and functioning. As we have noted, the
range of zooplankton communities that occupy different regions
of the Southern Ocean are often represented by changes in
the balance of taxa or in the abundance of species as opposed
to fundamentally different faunas (see Murphy et al., 2021).
Collectively, these communities support an array of biodiversity
and energy pathways that enable the maintenance of ecosystem
structure and functioning (Murphy et al., 2012a, 2016; Barnes
and Pálinkó, 2017; Trebilco et al., 2020; McCormack et al., 2021).
These include the classic short, efficient energy pathway from
phytoplankton through to baleen whales via Antarctic krill. This
was long viewed as the dominant food chain in the Antarctic
marine ecosystem and in some areas, such as the southwest
Atlantic sector, sustains large populations of higher trophic level
predators (Clarke, 1985; Hill et al., 2006; Murphy et al., 2007a,
2012a; Siegel, 2016; Saunders et al., 2019). There are, however,
alternative pathways that transfer energy to higher trophic levels
and sustain other predators less dependent on krill including a
range of seals, sea birds, icefish, toothfish and toothed whales.
These pathways may be dominated for example, by copepods
(Murphy et al., 2012a) or salps (Atkinson et al., 2004). Although
understanding of the regional and temporal variations in these
alternative pathways is emerging (Murphy et al., 2013; Hill et al.,
2021) and such pathways may provide different links between
pelagic-benthic and pelagic-mesopelagic communities, unless
primary production changes they cannot support the same degree
of predator demand as the phytoplankton-krill-predator pathway

(Murphy et al., 2007a). This is because their increased complexity
and concomitant trophic transfers are associated with greater
energy loss (Murphy et al., 2012a, 2016). Changes in structure
and dominance characteristics of zooplankton communities, the
causal mechanisms, and the effects on spatio-temporal variations
in these energy pathways (and interactions between them) will
therefore be important in interpreting future changes in Southern
Ocean ecosystems.

Of greatest concern south of the APF is a shift from
Antarctic krill dominated communities in the HNHC waters
of the Southwest Atlantic Sector, to communities dominated
by salps and/or copepods in response to ocean warming and
sea ice loss. Such a shift would have important consequences
for food webs here, including species that rely on Antarctic
krill as a food source, particularly higher trophic level predators
(see Bestley et al., 2020). Disruption of the short, energetically
efficient food chain afforded by Antarctic krill may not be
sufficient to support current levels of predator populations in
the region. Changes in grazing pressure under the dominance
of salps and/or copepods (which favor smaller phytoplankton
species than ingested by Antarctic krill) may also have a top
down influence on primary producers and their community
dynamics and dominance patterns (see Pinkerton et al., 2021).
Crucially this shift would also affect the operation and success
of the Antarctic krill fishery (see Trebilco et al., 2020), the
mackerel icefish, Antarctic and Patagonian toothfish fisheries,
and wildlife tourism (see Grant et al., 2021). Consequences for
regional biogeochemical cycling and contributions to climate
regulation would also ensue (see Henley et al., 2020). Similarly,
a shift from E. crystallorophias dominated communities in the
neritic regions and sea ice zone of the high Antarctic to ones
dominated by Antarctic krill, Thysanoessa macrura, and/or salps
in response to ocean warming and sea ice loss will have several
consequences for food webs, including for predator populations
that rely on E. crystallorophias, and for primary producers and
their community dynamics. There will also be effects on wildlife
tourism, regional biogeochemical cycling, and climate regulation
associated with such shifts in dominance. Ocean warming may
also generate a shift in open ocean communities which are
currently dominated by copepods and indirectly support the
Antarctic krill fishery, wildlife tourism and potentially contribute
significantly to biogeochemical cycling and carbon sequestration.
Although overall increases in salps in open ocean (and other
zooplankton) communities may have negative consequences for
ecosystems services, they could enhance the potential for carbon
export and support benthic communities (Trebilco et al., 2020).
The implications for the loss of pteropods from the various
zooplankton communities discussed here and the food webs they
are part of, in response to increased ocean acidification, are
less clear (Hunt et al., 2008). These potential shifts highlight
the urgent need for improved research into zooplankton species
other than Antarctic krill2.

2A Web of Science search (using appropriate terms to capture Southern Ocean
research on the four taxa and key species examined in this study) reveals a
prevalence of publications on krill and Antarctic krill over the past 10 years,
compared with copepod, salps and pteropods.
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The characterization of zooplankton communities in space
and time across the Southern Ocean is challenging, especially
given the vast scale and oceanographic complexity (Wiebe et al.,
2017; Pinkerton et al., 2020), and relatively few studies have
examined community dynamics and interactions. Nevertheless,
an understanding of shifts in dominance at the community level
will reveal important competitive and trophic interactions that
may be missed if focusing solely on population level responses
to change. A shift from autecological to synecological studies
that examine life history traits and strategies, population and
community dynamics is therefore required to facilitate more
robust predictions of the cascading effects of global change
through Southern Ocean food webs, and the associated top down
and bottom up forcings.

Resilience
Just as some species may be vulnerable to drivers of future change,
they may also be resilient (Keister et al., 2012; Murphy et al., 2016;
Tarling et al., 2018). Resilience (sensu Oliver et al., 2015a) has
gained increasing attention in interpreting change impacts on
zooplankton and other marine species and for its application
to ecosystem based management (Richardson, 2008; Watters
et al., 2013; Constable et al., 2014a). There is also recognition
that community dynamics may have potentially profound
consequences for the resilience of ecosystem functions, including
those upon which humans depend (Oliver et al., 2015b). Despite
this, current projections of species and ecosystem change do not
account for the capacity for resilience, for example the ability
of communities to retain locations and distributional ranges
(Angilletta, 2009; Tarling et al., 2018) and maintain processes that
contribute to ecosystem function. Nor do they account for the
negative impacts on biological resilence, particularly in response
to multiple drivers of change.

Although we considered the potential resilience of
zooplankton taxa to the impacts of key drivers, they are
uncertain. Some of the taxa assessed here, including E. superba,
Thysanoessa macrura, some copepods and salps, exhibit
varying degrees of phenotypic plasticity and high variabilities
in their life history strategies which confer their potential
resilience to some drivers, at least up to a certain level.
E. crystallorophias, however, has a limited thermal range
and their genetic adaptation to past periods of increased
glaciation imply that it is unlikely to be resilient to future
climate change. The seasonal �ar undersaturated conditions
that thecosome pteropods already experience, together with
an ability to maintain shell integrity may be indicative of a
level of resilience. This, however, may come at a metabolic
cost that is unlikely to be maintained over the long-term.
A concerted effort to parameterize potential resilience and
reduce associated uncertainties will enhance predictions
of the distributional range of zooplankton species and
communities (Tarling et al., 2018). Given that Southern
Ocean zooplankton will be under the complex spatially and
temporally variable influence of multiple drivers of change,
further research into the individual as well as the additive,
synergistic, or antagonistic effects of these on resilience is
urgently required (Murphy et al., 2016; Gruber et al., 2021).

These zooplankton taxa dominate the mid trophic level
of many Southern Ocean food webs, transferring energy
from lower to higher trophic levels. The low functional
redundancy (i.e., a small number of species performing
the majority of core ecological functions) of Southern
Ocean food webs at this key trophic level renders these
ecosystems particularly sensitive to change (Atkinson et al.,
2014; Murphy et al., 2016). Understanding the influence of
community dynamics on the manifestation of alternative energy
pathways (Ducklow et al., 2007; Ainley et al., 2015) and the
resilience of ecosystem functions is therefore also integral to
predicting change.

Consequences for Ecosystem Structure and
Functioning
Given the current understanding of the role of dominant
zooplankton taxa assessed here in Southern Ocean ecosystems, it
is clear that future changes in their population and community
dynamics will have potentially wide ranging and complex
consequences for biodiversity and ecosystem structure and
functioning, including ecosystem services. Future changes in
these zooplankton communities may alter food web connections
within regional ecosystems (see McCormack et al., 2021),
with implications for biogeochemical cycling, carbon flux
and sequestration (see Henley et al., 2020), population and
community dynamics, and energy flows to benthic communities
(see Brasier et al., 2021) and between primary producers
(see Pinkerton et al., 2021) through to mid- (see Caccavo
et al., 2021) and higher trophic level predators (see Bestley
et al., 2020), fisheries production, and wildlife tourism (see
Rogers et al., 2020; Trebilco et al., 2020; Cavanagh et al.,
2021; Grant et al., 2021). These may have ramifications for
the resilience of population-, community- and ecosystem-level
structure and functioning, and the emergent properties of
regional ecosystems across the Southern Ocean. In addition,
these zooplankton may also be involved in feedback process
that modify the physical and chemical conditions in the
Southern Ocean and regional climate processes (see Henley et al.,
2020). Before we can predict the resultant effects on whole
ecosystems and socioeconomics with any level of confidence,
however, we must address key knowledge gaps on the complex
interactions and mechanisms associated with zooplankton
dynamics, their functional roles, and their sensitivities to
drivers of change.

Future Work: Moving Toward Robust
Quantitative Projections
The current trajectory of global greenhouse gas emission
pathways (IPCC, 2018, 2019, 2021) means that we may not
be on track to limit global warming to 1.5◦C above pre-
industrial levels and so we must accept that future climate
change will be rapid, large ecological changes will occur,
and future research must hence be centered on providing
options for conservation and management. Robust qualitative
and quantitative projections of future changes in Southern
Ocean zooplankton are therefore needed to support global
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and regional assessments, and conservation and ecosystem-
based management strategies that can anticipate or adapt to
natural and anthropogenically driven change. As such, they
must be focused on the appropriate species (and life history
stages), processes, space, and timescales. Projections of the
distributions and abundances of zooplankton populations and
communities can be used to assess how these taxa may
directly or indirectly influence the structure and functioning
of Southern Ocean ecosystems, such as biodiversity, food
webs, biogeochemical cycling and climate regulation, energy
transfer to higher trophic level predators, and provisioning
of fisheries and wildlife tourism. This requires three key
areas of development. Firstly, a comprehensive understanding
of zooplankton ecology, the internal and external drivers
of zooplankton dynamics (e.g., ontogenic and species-specific
physiology, morphology, behavior, dietary preferences and
feeding strategies, life history strategies, populations, and
community structure, distributions and dominance patterns,
spatial connectivity and food web interactions, etc.) and seasonal
development, past and present variability and change in
zooplankton dynamics, attribution of the causes of zooplankton
change to natural versus anthropogenic drivers, zooplankton
resilience, and the mechanisms involved. Secondly, a suite of
ecological models, including coupled physical, biogeochemical,
and biological models, that can conceptualize and quantify
these and relevant ecological processes. Thirdly, by driving
these models with regionally appropriate scenarios of changes
in key natural and anthropogenic drivers, robust projections
of future changes in zooplankton can be made across a range
of spatial, temporal, and organizational scales. Unfortunately,
detailed knowledge (both qualitative and quantitative) for
many zooplankton species, life history stages, populations and
communities is limited to a few areas, and primarily during the
austral spring/summer, and the underlying processes and causal
mechanisms of their dynamics are poorly understood. Added
to this scarcity, zooplankton data are not well centralized –
they are dispersed across many storage platforms, in different
formats, and in some cases are inaccessible. Whilst progress
has been made in data synthesis and model development
for some species (e.g., Antarctic krill) and scenarios and
projections based on these, projections for zooplankton across
the MEASO Areas and other key areas that can support
policy decisions are restricted. Current key limitations are
outlined in Box 1.

Given the mounting pressures of anthropogenic change,
research resources need to be focused on the timely delivery
of tailored information to policymakers that can support
conservation and management options in the near-term.
A coherent strategy that prioritizes Southern Ocean zooplankton
research over the coming years to achieve this is therefore
urgently required. Such a strategic approach (e.g., see Box 2)
has already begun for Antarctic krill in the context of fisheries
management through initiatives such as ICED and the SCAR
Krill Action Group (SKAG) (Murphy et al., 2018; Meyer et al.,
2020). An all-encompassing set of priorities for zooplankton is
yet to be fully explored and consolidated, and will be a future
collaborative activity of ICED.

BOX 2 | Research gaps and priorities: Improving projections of future
zooplankton change.
Robust qualitative and quantitative projections of zooplankton change are
urgently needed to undertake assessments of current and future risks and
inform conservation and management options for Southern Ocean
ecosystems over the coming decades. A strategy for zooplankton research
that prioritizes aspects in Box 1 to deliver these projections is therefore
warranted. This must address knowledge gaps in fundamental (qualitative and
quantitative) ecological understanding and facilitate model development by
focusing on:
Key species and communities that are of importance to conservation and
management and/or assumed or known to have important roles in ecosystem
structure and functioning (including ecosystem services) either now or in the
future.
Key regions and habitats that are of importance to the development of
conservation and management strategies (this includes not only for, e.g.,
existing/planned Marine Protected Areas and the Commission for the
Conservation of Antarctic Marine Living Resources (CCAMLR) Statistical
Areas, but other ecologically important areas or hotspots that influence
zooplankton dynamics). This should also include regions and habitats (and
seasons) that are poorly sampled.
Projections of zooplankton change over short timescales (and within
key regions) that are relevant to conservation and management (e.g., the next
3, 5 to 10 years in addition to the next few decades) and consider,
incorporate, and communicate the uncertainties underpinning them (e.g., in
understanding of ecological processes and scenarios of key drivers, and
hence model parameterization).

Examples of near-term (2–5 years) and longer-term (>5 years) research
priorities (in addition to information on habitats) include:

Near-term research priorities
Synthesis of existing data on distribution and abundance: Mine, collate
and synthesize existing circumpolar-scale information and data on the
spatio-temporal distributions of key taxa across key regions and habitats
(particularly sea ice environments).
Life history models: Develop life history models for key species (that
incorporate phenotypic plasticity) can be used to estimate population
dynamics across space and time scales. In combination with observational
data, they can be used to explore the biological and environmental factors that
impact critical life history processes/events and drive population dynamics,
thus giving an indication of the vulnerabilities of species to changing
conditions. They can also be used to explore species influence on ecosystem
functioning including energy flows, nutrient cycling, climate regulation, and the
provisioning of fisheries and wildlife tourism under changing conditions.
Biogeochemical roles: Improve understanding of the role of zooplankton in
biogeochemical cycles, particularly in carbon budgets and particulate organic
matter export and remineralization.
Communication of uncertainties and risks: Evaluate and communicate all
sources of uncertainty (e.g., in ecological, physical, and chemical processes,
observations, model formulations, parameter estimates, model evaluation,
etc.) and their incorporation into projections of change. Explore ways of
dealing with current uncertainties. E.g., approaches that evaluate risks (based
on the magnitude and probability of change) and incorporate uncertainty
rather than specific trajectories of zooplankton change under future scenarios.
Resolution of conflicting views: Resolve conflicting views in zooplankton
ecology, e.g., of trends in distribution and abundances in Antarctic krill,
poleward shifts, and resilience of zooplankton in response to multiple drivers
of environmental change.

Longer-term priorities
Mechanistic understanding: Identifying the underlying mechanisms that
control observed patterns of zooplankton dynamics is crucial to predicting
how they will respond to future change. A focus on generating specifically
defined rationales explaining observed patterns of zooplankton communities
and environmental variables, particularly sea ice, ocean temperatures and
ocean acidification is needed. These will be important for informing

(Continued)
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BOX 2 | (Continued)
the development of ecological models, projections of change, and testing
conservation and management approaches.
Life histories, traits, and strategies: These are fundamental determinants
of zooplankton population dynamics and their responses to change. They also
underpin conservation and ecosystem-based management decisions and
stock assessments. A more complete understanding and quantification of
these aspects can reveal many of the factors that constrain the success of
different species across spatial and temporal scales. This forms the basis of
predicting zooplankton responses to future change and improving
conservation and management decisions.
Life history models: Refine life history models based on improved
mechanistic understanding.
Community dynamics and interactions: Shift from autecological to
synecological studies to improve understanding of community dynamics (i.e.,
changes in community structure, dominance, and distribution patterns),
trophic interactions with other taxa, and the seasonal development of these
processes.
Biogeochemical roles: Develop a more complete understanding of the role
of zooplankton in biogeochemical cycling and feedbacks.
Uncertainties and risks: Continue to evaluate, refine, and communicate all
sources of uncertainty and communicate associated risks.
Promote data availability and application: Continue to mine, collate, and
synthesize data relevant to zooplankton habitats, distribution and abundance
and promote open access.

Such a strategy must be developed by a broad range
of relevant stakeholders including ecologists, physicists,
biogeochemists, climate and conservation scientists, social
scientists, environmental economists, fisheries managers,
industry representatives, and relevant programmes and
initiatives such as ICED, MEASO, SCAR (and relevant
research programmes therein including SKAG, SCAR Plastic
in polar environments Action Group, PLASTIC-AG, and the
Southern Ocean Observing System, SOOS), the Antarctic
Treaty System (including CCAMLR and the Committee for
Environmental Protection, CEP), and international treaties and
organizations (e.g., the International Whaling Commission,
IWC, the Agreement on the Conservation of Albatrosses
and Petrels, ACAP, the IPCC, and the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem
Services, IPBES). This will also foster a shared understanding
of the challenges involved and the nature of existing and
new multi- and interdisciplinary research approaches needed
to address them.

Whilst extensive future circumpolar field efforts can improve
data coverage, offering much needed spatially and temporally
comprehensive insight into population and community
dynamics and ecological processes, they cannot yield near-term
support for conservation and management. Likewise, many
of the large international observational programmes that are
underway or being developed to detect change in physical,
chemical, and biological aspects of the Southern Ocean will
take some years to fully develop. This means that our ability
to be definitive about the attribution of zooplankton and wider
ecological changes to natural and/or anthropogenic change in
this highly variable ocean is limited. In the interim, focusing
on research areas that can support model parameterization and
development, particularly better mechanistic understanding,

will be important. This will allow us to test and explore
ecological processes based on the best available knowledge,
while communicating assumptions and uncertainties. It will also
allow us to constrain model projections of future zooplankton
change, enabling assessments of the potential range of impacts
of change together with the associated uncertainties and
risks they entail.

A strategy for zooplankton research must therefore address
knowledge gaps in the fundamental (qualitative and quantitative)
ecological understanding and the model development required
to generate robust projections of ecological change and
undertake assessments of current and future risks. We still
need very basic, circumpolar-scale information on the spatio-
temporal distributions of key taxa across a range of habitats
(particularly sea ice environments) throughout the Southern
Ocean. The mining, collation and synthesis of the large
volumes of existing data provides a tractable approach to
address this primary priority issue (e.g., Cornils et al., 2018).
However, knowledge of distribution, abundance, life history
traits and strategies and the seasonal development of population
dynamics, biogeochemical roles and food web interactions are
also a priority. These aspects in turn underpin models and
projections of responses to future change, which also need to
incorporate detailed assessments of the underpinning model
assumptions and various other sources of model uncertainty.
Such an endeavor requires an international collaborative effort
and will benefit from the support of national Antarctic
research programmes and international research programmes
and initiatives, such as the Southern Ocean focused ICED, SCAR,
and the global Integrated Marine Biosphere Research project
(IMBeR).
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Supplementary Figure 1 | Modelled environmental suitability for (A) total
zooplankton, i.e., Euphausiidae, Copepoda (Calanoida and Oithona similis), and
pteropods, (B) Euphausiidae, (C) Copepoda (Calanoida), (D) Oithona similis, and

(E) pteropod abundance from the combined Boosted Regression Tree model of
Pinkerton et al. (2020) showing average modelled daily abundance (counts per 5
nautical mile CPR segment) over the 6 months (October to March) and years
1998–2018. No analysis was possible for areas shown in white, for example
because environmental conditions were outside the observations. Black lines are
nominal positions of (from north): Subantarctic Front, Antarctic Polar Front,
average maximum northern extent of seasonal sea ice (dashed), and the Southern
Boundary of the Antarctic Circumpolar Current.

Supplementary Figure 2 | Modelled environmental suitability for (A) total
zooplankton, i.e., Euphausiidae, Copepoda (Calanoida and Oithona similis), and
pteropods, (B) Euphausiidae, (C) Copepoda (Calanoida), (D) Oithona similis, and
(E) pteropod abundance from the combined Boosted Regression Tree model of
Pinkerton et al. (2020) showing long-term, linear trends in abundance (trend units
are 1000 counts per 5 nautical miles of CPR segment per year). Sen slope values
showing the changes in modelled abundance at each point. Colored vales are
significant (p < 0.05). Warm colors indicate a positive (increasing) trend in the
environmental suitability, and cold colors a negative (decreasing) trend. White
areas have no significant trend. Areas shown gray have no data. Black lines are
nominal positions of (from north): Subantarctic Front, Antarctic Polar Front,
average maximum northern extent of seasonal sea ice (dashed), and the Southern
Boundary of the Antarctic Circumpolar Current.

Supplementary Figure 3 | Time series of change in environmental suitability for
total zooplankton abundance, i.e., Euphausiidae, Copepoda (Calanoida and
Oithona similis), and pteropods, from the combined Boosted Regression Tree
model of Pinkerton et al. (2020) for individual Marine Ecosystem Assessment for
the Southern Ocean (MEASO) Areas. Imbedded three letter codes in figure relate
to MEASO sectors (first two letters) and zones (last letter). Sectors are Atlantic
(AO), Central Indian (CI), East Indian (EI), West Pacific (WP), and East Pacific (EA).
Zones are Antarctic (A), Subantarctic (S), Northern (N). See also Figure 1 in main
paper. The environmental suitability anomaly (difference from the monthly
climatological value) is shown for each month over period 1998–2018. Gray
shading indicates calendar years. Black points and lines are monthly anomalies
(differences from long-term monthly means). Red lines are smoothed changes
(4-year running median).

Supplementary Table 1 | Current role of zooplankton in Southern Ocean
ecosystems (based on information provided in taxonomic Sections Euphausiids
(Family Euphausiidae), Copepods (Subclass Copepoda), Salps (Order Salpida),
and Pteropods (Order Pteropoda)). Roles may vary across areas of the Southern
Ocean, seasons, or with life history stages. See Figure 1 for locations and key to
MEASO areas. See Supplementary Table 2 for environmental tolerances.

Supplementary Table 2 | Environmental tolerances of zooplankton in Southern
Ocean ecosystems (based on empirical studies). n/a = data not available.

Supplementary Table 3 | Future prognoses* for Southern Ocean zooplankton in
response to changes in key physical, chemical, and ecological drivers (based on
information provided in Sections Euphausiids (Family Euphausiidae), Copepods
(Subclass Copepoda), Salps (Order Salpida), Pteropods (Order Pteropoda), and
Past Changes in Zooplankton: A modelled example using Continuous Plankton
Recorder Data (including references cited therein)) and Supplementary Tables 1,
2. Prognoses may vary across areas of the Southern Ocean, seasons, or life

history stages. See Figure 1 for locations and key to MEASO areas.
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